Marcus Wäneskog, Trine Bertram Rasmussen, Emil D Jensen
{"title":"A strategy for successful dual-species protein expression of genes with non-optimal codon usage destined for bacterial and yeast cell factories.","authors":"Marcus Wäneskog, Trine Bertram Rasmussen, Emil D Jensen","doi":"10.1002/btpr.3482","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant protein expression on an industrial scale traditionally utilizes one of two microbial workhorses: Escherichia coli or Saccharomyces cerevisiae. Additionally, random protein engineering of enzymes and proteins aimed for expression in S. cerevisiae are often mutagenized and pre-screened in E. coli before expression in yeast. This introduces artificial bottlenecks as the bacterial expression vector needs to be substituted for a yeast expression vector via sub-cloning, and the new library re-evaluated before a final screening in yeast. Here, we put forward a protein expression and engineering strategy that involves the use of a dual-host shuttle vector (pYB-Dual) designed with both a strong inducible yeast promoter (pGAL1), and a strong inducible bacterial promoter (pT7-RNAP), which allows for inducible protein expression in both species. Additionally, we demonstrate that by transforming the pYB-Dual vector into the E. coli strain Rosetta 2, which has elevated levels of 7 rare tRNAs, we can achieve high-level protein expression in both yeast and bacteria, even when using a mNeonGreen gene codon optimized for yeast. This dual expression vector is expected to remove bottlenecks during protein engineering of commercially important enzymes destined for high-titer expression in yeast.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3482","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant protein expression on an industrial scale traditionally utilizes one of two microbial workhorses: Escherichia coli or Saccharomyces cerevisiae. Additionally, random protein engineering of enzymes and proteins aimed for expression in S. cerevisiae are often mutagenized and pre-screened in E. coli before expression in yeast. This introduces artificial bottlenecks as the bacterial expression vector needs to be substituted for a yeast expression vector via sub-cloning, and the new library re-evaluated before a final screening in yeast. Here, we put forward a protein expression and engineering strategy that involves the use of a dual-host shuttle vector (pYB-Dual) designed with both a strong inducible yeast promoter (pGAL1), and a strong inducible bacterial promoter (pT7-RNAP), which allows for inducible protein expression in both species. Additionally, we demonstrate that by transforming the pYB-Dual vector into the E. coli strain Rosetta 2, which has elevated levels of 7 rare tRNAs, we can achieve high-level protein expression in both yeast and bacteria, even when using a mNeonGreen gene codon optimized for yeast. This dual expression vector is expected to remove bottlenecks during protein engineering of commercially important enzymes destined for high-titer expression in yeast.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.