Ultrastructural localization of calcium homeostasis modulator 1 in mouse taste buds.

IF 2.8 4区 心理学 Q1 BEHAVIORAL SCIENCES Chemical Senses Pub Date : 2024-01-01 DOI:10.1093/chemse/bjae019
Rio Ikuta, Yuu Kakinohana, Shun Hamada
{"title":"Ultrastructural localization of calcium homeostasis modulator 1 in mouse taste buds.","authors":"Rio Ikuta, Yuu Kakinohana, Shun Hamada","doi":"10.1093/chemse/bjae019","DOIUrl":null,"url":null,"abstract":"<p><p>Taste receptor cells are morphologically classified as types II and III. Type II cells form a unique type of synapses referred to as channel synapses where calcium homeostasis modulator 1 (CALHM1) together with CALHM3 forms voltage-gated channels that release the neurotransmitter, adenosine triphosphate (ATP). To validate the proposed structural model of channel synapses, the ultrastructural localization of CALHM1 in type II cells of both fungiform and circumvallate taste buds was examined. A monoclonal antibody against CALHM1 was developed and its localization was evaluated via immunofluorescence and immunoelectron microscopy using the immunogold-silver labeling technique. CALHM1 was detected as puncta using immunofluorescence and along the presynaptic membrane of channel synapses facing atypical mitochondria, which provide ATP, by immunoelectron microscopy. In addition, it was detected along the plasma membrane lined by subsurface cisternae at sites apposed to afferent nerve fibers. Our results support the validity of a previously proposed structural model for channel synapses and provide insights into the function of subsurface cisternae whose function in taste receptor cells is unknown. We also examined the localization of CALHM1 in hybrid synapses of type III cells, which are conventional chemical synapses accompanied by mitochondria similar to atypical mitochondria of channel synapses. CALHM1 was not detected in the six hybrid synapses examined using immunoelectron microscopy. We further performed double immunolabeling for CALHM1 and Bassoon, which is detected as puncta corresponding to conventional vesicular synapses in type III cells. Our observations suggest that at least some, and probably most, hybrid synapses are not accompanied by CALHM1.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjae019","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Taste receptor cells are morphologically classified as types II and III. Type II cells form a unique type of synapses referred to as channel synapses where calcium homeostasis modulator 1 (CALHM1) together with CALHM3 forms voltage-gated channels that release the neurotransmitter, adenosine triphosphate (ATP). To validate the proposed structural model of channel synapses, the ultrastructural localization of CALHM1 in type II cells of both fungiform and circumvallate taste buds was examined. A monoclonal antibody against CALHM1 was developed and its localization was evaluated via immunofluorescence and immunoelectron microscopy using the immunogold-silver labeling technique. CALHM1 was detected as puncta using immunofluorescence and along the presynaptic membrane of channel synapses facing atypical mitochondria, which provide ATP, by immunoelectron microscopy. In addition, it was detected along the plasma membrane lined by subsurface cisternae at sites apposed to afferent nerve fibers. Our results support the validity of a previously proposed structural model for channel synapses and provide insights into the function of subsurface cisternae whose function in taste receptor cells is unknown. We also examined the localization of CALHM1 in hybrid synapses of type III cells, which are conventional chemical synapses accompanied by mitochondria similar to atypical mitochondria of channel synapses. CALHM1 was not detected in the six hybrid synapses examined using immunoelectron microscopy. We further performed double immunolabeling for CALHM1 and Bassoon, which is detected as puncta corresponding to conventional vesicular synapses in type III cells. Our observations suggest that at least some, and probably most, hybrid synapses are not accompanied by CALHM1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙稳态调节剂 1 在小鼠味蕾中的超微结构定位
味觉感受器细胞在形态上分为 II 型和 III 型。Ⅱ型细胞形成一种独特的突触,被称为通道突触,其中钙稳态调节器1(CALHM1)与CALHM3一起形成电压门控通道,释放神经递质三磷酸腺苷(ATP)。为了验证所提出的通道突触结构模型,研究人员检测了 CALHM1 在菌形味蕾和环状味蕾 II 型细胞中的超微结构定位。研究人员开发了针对 CALHM1 的单克隆抗体,并利用免疫金银标记技术通过免疫荧光和免疫电镜对其定位进行了评估。通过免疫荧光,CALHM1 以点状形式被检测到;通过免疫电镜,CALHM1 沿通道突触前膜被检测到,通道突触前膜面向提供 ATP 的非典型线粒体。此外,在与传入神经纤维相邻的部位,沿着表面下贮水池内衬的质膜也检测到了这种物质。我们的研究结果支持了之前提出的通道突触结构模型的正确性,并对表面下贮液器的功能提供了见解,而这些贮液器在味觉感受器细胞中的功能尚不清楚。我们还研究了 CALHM1 在 III 型细胞混合突触中的定位情况,这种突触是传统的化学突触,伴有与通道突触的非典型线粒体相似的线粒体。使用免疫电镜检查的六个混合突触中均未检测到 CALHM1。我们进一步对 CALHM1 和巴松进行了双重免疫标记,在 III 型细胞中,巴松被检测为与传统囊泡突触相对应的点。我们的观察结果表明,至少有一部分(可能是大部分)混合突触不伴有 CALHM1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Senses
Chemical Senses 医学-行为科学
CiteScore
8.60
自引率
2.90%
发文量
25
审稿时长
1 months
期刊介绍: Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.
期刊最新文献
A receptor-based assay to study the sweet and bitter tastes of sweeteners and binary sweet blends: The SWEET Project. Late olfactory bulb involvement in COVID19. Taste And Odor Interactions After Metabolic Surgery Novel Gurmarin-like Peptides from Gymnema sylvestre and their Interactions with the Sweet Taste Receptor T1R2/T1R3 How conspecific and allospecific eggs and larvae drive oviposition preference in Drosophila
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1