{"title":"Exploring dietary differences among developmental stages of triatomines infected with Trypanosoma cruzi in different habitats","authors":"","doi":"10.1016/j.ijpara.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Chagas disease affects millions of people in Colombia and worldwide, with its transmission influenced by ecological, environmental, and anthropogenic factors. There is a notable correlation between vector transmission cycles and the habitats of insect vectors of the parasite. However, the scale at which these cycles operate remains uncertain. While individual triatomine ecotopes such as palms provide conditions for isolated transmission cycles, recent studies examining triatomine blood sources in various habitats suggest a more intricate network of transmission cycles, linking wild ecotopes with human dwellings. This study aims to provide further evidence on the complexity of the scale of <em>Trypanosoma cruzi</em> transmission cycles, by exploring the different blood sources among developmental stages of infected triatomines in different habitats. We evaluated infection rates, parasite loads, feeding sources, and the distribution of <em>Rhodnius prolixus</em> insects in <em>Attalea butyracea</em> palms across three distinct habitats in Casanare, Colombia: peridomestics, pastures, and woodlands. Our results show that there is no clear independence in transmission cycles in each environment. Analyses of feeding sources suggest the movement of insects and mammals (primarily bats and didelphids) among habitats. A significant association was found between habitat and instar stages in collected <em>R. prolixus</em>. The N1 stage was correlated with pasture and woodland, while the N4 stage was related to pasture. Additionally, adult insects exhibited higher <em>T. cruzi</em> loads than N1, N2, and N3. We observed higher <em>T. cruzi</em> loads in insects captured in dwelling and pasture habitats, compared with those captured in woodland areas. Effective Chagas disease control strategies must consider the complexity of transmission cycles and the interplay between domestic and sylvatic populations of mammals and vectors.</p></div>","PeriodicalId":13725,"journal":{"name":"International journal for parasitology","volume":"54 11","pages":"Pages 559-568"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020751924001073/pdfft?md5=96a3bbd4f11f3639150ed3d465355083&pid=1-s2.0-S0020751924001073-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal for parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020751924001073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chagas disease affects millions of people in Colombia and worldwide, with its transmission influenced by ecological, environmental, and anthropogenic factors. There is a notable correlation between vector transmission cycles and the habitats of insect vectors of the parasite. However, the scale at which these cycles operate remains uncertain. While individual triatomine ecotopes such as palms provide conditions for isolated transmission cycles, recent studies examining triatomine blood sources in various habitats suggest a more intricate network of transmission cycles, linking wild ecotopes with human dwellings. This study aims to provide further evidence on the complexity of the scale of Trypanosoma cruzi transmission cycles, by exploring the different blood sources among developmental stages of infected triatomines in different habitats. We evaluated infection rates, parasite loads, feeding sources, and the distribution of Rhodnius prolixus insects in Attalea butyracea palms across three distinct habitats in Casanare, Colombia: peridomestics, pastures, and woodlands. Our results show that there is no clear independence in transmission cycles in each environment. Analyses of feeding sources suggest the movement of insects and mammals (primarily bats and didelphids) among habitats. A significant association was found between habitat and instar stages in collected R. prolixus. The N1 stage was correlated with pasture and woodland, while the N4 stage was related to pasture. Additionally, adult insects exhibited higher T. cruzi loads than N1, N2, and N3. We observed higher T. cruzi loads in insects captured in dwelling and pasture habitats, compared with those captured in woodland areas. Effective Chagas disease control strategies must consider the complexity of transmission cycles and the interplay between domestic and sylvatic populations of mammals and vectors.
期刊介绍:
International Journal for Parasitology offers authors the option to sponsor nonsubscriber access to their articles on Elsevier electronic publishing platforms. For more information please view our Sponsored Articles page. The International Journal for Parasitology publishes the results of original research in all aspects of basic and applied parasitology, including all the fields covered by its Specialist Editors, and ranging from parasites and host-parasite relationships of intrinsic biological interest to those of social and economic importance in human and veterinary medicine and agriculture.