Maximizing microcalcification detectability in low-dose dedicated cone-beam breast CT: parallel cascades-based theoretical analysis.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2024-05-01 Epub Date: 2024-05-15 DOI:10.1117/1.JMI.11.3.033501
Thomas Larsen, Hsin Wu Tseng, Rachawadee Trinate, Zhiyang Fu, Jing-Tzyh Alan Chiang, Andrew Karellas, Srinivasan Vedantham
{"title":"Maximizing microcalcification detectability in low-dose dedicated cone-beam breast CT: parallel cascades-based theoretical analysis.","authors":"Thomas Larsen, Hsin Wu Tseng, Rachawadee Trinate, Zhiyang Fu, Jing-Tzyh Alan Chiang, Andrew Karellas, Srinivasan Vedantham","doi":"10.1117/1.JMI.11.3.033501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aim to determine the combination of X-ray spectrum and detector scintillator thickness that maximizes the detectability of microcalcification clusters in dedicated cone-beam breast CT.</p><p><strong>Approach: </strong>A cascaded linear system analysis was implemented in the spatial frequency domain and was used to determine the detectability index using numerical observers for the imaging task of detecting a microcalcification cluster with 0.17 mm diameter calcium carbonate spheres. The analysis considered a thallium-doped cesium iodide scintillator coupled to a complementary metal-oxide semiconductor detector and an analytical filtered-back-projection reconstruction algorithm. Independent system parameters considered were the scintillator thickness, applied X-ray tube voltage, and X-ray beam filtration. The combination of these parameters that maximized the detectability index was considered optimal.</p><p><strong>Results: </strong>Prewhitening, nonprewhitening, and nonprewhitening with eye filter numerical observers indicate that the combination of 0.525 to 0.6 mm thick scintillator, 70 kV, and 0.25 to 0.4 mm added copper filtration maximized the detectability index at a mean glandular dose (MGD) of 4.5 mGy.</p><p><strong>Conclusion: </strong>Using parallel cascade systems' analysis, the combination of parameters that could maximize the detection of microcalcifications was identified. The analysis indicates that a harder beam than that used in current practice may be beneficial for the task of detecting microcalcifications at an MGD suitable for breast cancer screening.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 3","pages":"033501"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.3.033501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We aim to determine the combination of X-ray spectrum and detector scintillator thickness that maximizes the detectability of microcalcification clusters in dedicated cone-beam breast CT.

Approach: A cascaded linear system analysis was implemented in the spatial frequency domain and was used to determine the detectability index using numerical observers for the imaging task of detecting a microcalcification cluster with 0.17 mm diameter calcium carbonate spheres. The analysis considered a thallium-doped cesium iodide scintillator coupled to a complementary metal-oxide semiconductor detector and an analytical filtered-back-projection reconstruction algorithm. Independent system parameters considered were the scintillator thickness, applied X-ray tube voltage, and X-ray beam filtration. The combination of these parameters that maximized the detectability index was considered optimal.

Results: Prewhitening, nonprewhitening, and nonprewhitening with eye filter numerical observers indicate that the combination of 0.525 to 0.6 mm thick scintillator, 70 kV, and 0.25 to 0.4 mm added copper filtration maximized the detectability index at a mean glandular dose (MGD) of 4.5 mGy.

Conclusion: Using parallel cascade systems' analysis, the combination of parameters that could maximize the detection of microcalcifications was identified. The analysis indicates that a harder beam than that used in current practice may be beneficial for the task of detecting microcalcifications at an MGD suitable for breast cancer screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在低剂量专用锥形束乳腺 CT 中最大限度地提高微钙化可探测性:基于并行级联的理论分析。
目的:我们的目标是确定 X 射线光谱和探测器闪烁体厚度的组合,使专用锥形束乳腺 CT 中微钙化簇的可探测性最大化:方法: 在空间频率域实施级联线性系统分析,并使用数字观测器确定可探测性指数,以完成探测直径为 0.17 毫米的碳酸钙球微钙化簇的成像任务。分析考虑了掺铊碘化铯闪烁体与互补金属氧化物半导体探测器的耦合,以及分析滤波后投影重建算法。考虑的独立系统参数包括闪烁体厚度、X 射线管应用电压和 X 射线束过滤。这些参数的组合能最大限度地提高可探测性指数,因此被认为是最佳组合:结果:预白化、非预白化、非预白化和眼滤光片数字观测器表明,在平均腺体剂量(MGD)为 4.5 mGy 的情况下,0.525 至 0.6 mm 厚的闪烁体、70 kV 和 0.25 至 0.4 mm 的铜滤光片的组合能最大限度地提高可探测性指数:结论:通过平行级联系统分析,确定了能最大限度检测微钙化的参数组合。分析表明,在适合乳腺癌筛查的平均腺体剂量(MGD)下,比目前使用的光束更强的光束可能有利于检测微钙化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1