Thomas Larsen, Hsin Wu Tseng, Rachawadee Trinate, Zhiyang Fu, Jing-Tzyh Alan Chiang, Andrew Karellas, Srinivasan Vedantham
{"title":"Maximizing microcalcification detectability in low-dose dedicated cone-beam breast CT: parallel cascades-based theoretical analysis.","authors":"Thomas Larsen, Hsin Wu Tseng, Rachawadee Trinate, Zhiyang Fu, Jing-Tzyh Alan Chiang, Andrew Karellas, Srinivasan Vedantham","doi":"10.1117/1.JMI.11.3.033501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aim to determine the combination of X-ray spectrum and detector scintillator thickness that maximizes the detectability of microcalcification clusters in dedicated cone-beam breast CT.</p><p><strong>Approach: </strong>A cascaded linear system analysis was implemented in the spatial frequency domain and was used to determine the detectability index using numerical observers for the imaging task of detecting a microcalcification cluster with 0.17 mm diameter calcium carbonate spheres. The analysis considered a thallium-doped cesium iodide scintillator coupled to a complementary metal-oxide semiconductor detector and an analytical filtered-back-projection reconstruction algorithm. Independent system parameters considered were the scintillator thickness, applied X-ray tube voltage, and X-ray beam filtration. The combination of these parameters that maximized the detectability index was considered optimal.</p><p><strong>Results: </strong>Prewhitening, nonprewhitening, and nonprewhitening with eye filter numerical observers indicate that the combination of 0.525 to 0.6 mm thick scintillator, 70 kV, and 0.25 to 0.4 mm added copper filtration maximized the detectability index at a mean glandular dose (MGD) of 4.5 mGy.</p><p><strong>Conclusion: </strong>Using parallel cascade systems' analysis, the combination of parameters that could maximize the detection of microcalcifications was identified. The analysis indicates that a harder beam than that used in current practice may be beneficial for the task of detecting microcalcifications at an MGD suitable for breast cancer screening.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 3","pages":"033501"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.3.033501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We aim to determine the combination of X-ray spectrum and detector scintillator thickness that maximizes the detectability of microcalcification clusters in dedicated cone-beam breast CT.
Approach: A cascaded linear system analysis was implemented in the spatial frequency domain and was used to determine the detectability index using numerical observers for the imaging task of detecting a microcalcification cluster with 0.17 mm diameter calcium carbonate spheres. The analysis considered a thallium-doped cesium iodide scintillator coupled to a complementary metal-oxide semiconductor detector and an analytical filtered-back-projection reconstruction algorithm. Independent system parameters considered were the scintillator thickness, applied X-ray tube voltage, and X-ray beam filtration. The combination of these parameters that maximized the detectability index was considered optimal.
Results: Prewhitening, nonprewhitening, and nonprewhitening with eye filter numerical observers indicate that the combination of 0.525 to 0.6 mm thick scintillator, 70 kV, and 0.25 to 0.4 mm added copper filtration maximized the detectability index at a mean glandular dose (MGD) of 4.5 mGy.
Conclusion: Using parallel cascade systems' analysis, the combination of parameters that could maximize the detection of microcalcifications was identified. The analysis indicates that a harder beam than that used in current practice may be beneficial for the task of detecting microcalcifications at an MGD suitable for breast cancer screening.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.