HID-CON: weakly supervised intrahepatic cholangiocarcinoma subtype classification of whole slide images using contrastive hidden class detection.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2025-11-01 Epub Date: 2025-03-12 DOI:10.1117/1.JMI.12.6.061402
Jing Wei Tan, Kyoungbun Lee, Won-Ki Jeong
{"title":"HID-CON: weakly supervised intrahepatic cholangiocarcinoma subtype classification of whole slide images using contrastive hidden class detection.","authors":"Jing Wei Tan, Kyoungbun Lee, Won-Ki Jeong","doi":"10.1117/1.JMI.12.6.061402","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Biliary tract cancer, also known as intrahepatic cholangiocarcinoma (IHCC), is a rare disease that shows no clear symptoms during its early stage, but its prognosis depends highly on the cancer subtype. Hence, an accurate cancer subtype classification model is necessary to provide better treatment plans to patients and to reduce mortality. However, annotating histopathology images at the pixel or patch level is time-consuming and labor-intensive for giga-pixel whole slide images. To address this problem, we propose a weakly supervised method for classifying IHCC subtypes using only image-level labels.</p><p><strong>Approach: </strong>The core idea of the proposed method is to detect regions (i.e., subimages or patches) commonly included in all subtypes, which we name the \"hidden class,\" and to remove them via iterative application of contrastive loss and label smoothing. Doing so will enable us to obtain only patches that faithfully represent each subtype, which are then used to train the image-level classification model by multiple instance learning (MIL).</p><p><strong>Results: </strong>Our method outperforms the state-of-the-art weakly supervised learning methods ABMIL, TransMIL, and DTFD-MIL by <math><mrow><mo>∼</mo> <mn>17</mn> <mo>%</mo></mrow> </math> , 18%, and 8%, respectively, and achieves performance comparable to that of supervised methods.</p><p><strong>Conclusions: </strong>The introduction of a hidden class to represent patches commonly found across all subtypes enhances the accuracy of IHCC classification and addresses the weak labeling problem in histopathology images.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 6","pages":"061402"},"PeriodicalIF":1.9000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.6.061402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Biliary tract cancer, also known as intrahepatic cholangiocarcinoma (IHCC), is a rare disease that shows no clear symptoms during its early stage, but its prognosis depends highly on the cancer subtype. Hence, an accurate cancer subtype classification model is necessary to provide better treatment plans to patients and to reduce mortality. However, annotating histopathology images at the pixel or patch level is time-consuming and labor-intensive for giga-pixel whole slide images. To address this problem, we propose a weakly supervised method for classifying IHCC subtypes using only image-level labels.

Approach: The core idea of the proposed method is to detect regions (i.e., subimages or patches) commonly included in all subtypes, which we name the "hidden class," and to remove them via iterative application of contrastive loss and label smoothing. Doing so will enable us to obtain only patches that faithfully represent each subtype, which are then used to train the image-level classification model by multiple instance learning (MIL).

Results: Our method outperforms the state-of-the-art weakly supervised learning methods ABMIL, TransMIL, and DTFD-MIL by 17 % , 18%, and 8%, respectively, and achieves performance comparable to that of supervised methods.

Conclusions: The introduction of a hidden class to represent patches commonly found across all subtypes enhances the accuracy of IHCC classification and addresses the weak labeling problem in histopathology images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
Impact of menopause and age on breast density and background parenchymal enhancement in dynamic contrast-enhanced magnetic resonance imaging. HID-CON: weakly supervised intrahepatic cholangiocarcinoma subtype classification of whole slide images using contrastive hidden class detection. Identifying texture features from structural magnetic resonance imaging scans associated with Tourette's syndrome using machine learning. SAM-MedUS: a foundational model for universal ultrasound image segmentation. Two-phase radial endobronchial ultrasound bronchoscopy registration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1