Tomás Diaz, Lisa A Treidel, Michael A Menze, Caroline M Williams, Jacqueline E Lebenzon
{"title":"Beclin-mediated Autophagy Drives Dorsal Longitudinal Flight Muscle Histolysis in the Variable Field Cricket, Gryllus lineaticeps.","authors":"Tomás Diaz, Lisa A Treidel, Michael A Menze, Caroline M Williams, Jacqueline E Lebenzon","doi":"10.1093/icb/icae042","DOIUrl":null,"url":null,"abstract":"<p><p>Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight-capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene that encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight-capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene that encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.