{"title":"A novel deep learning technique for medical image analysis using improved optimizer.","authors":"Vertika Agarwal, M C Lohani, Ankur Singh Bist","doi":"10.1177/14604582241255584","DOIUrl":null,"url":null,"abstract":"<p><p>Application of Convolutional neural network in spectrum of Medical image analysis are providing benchmark outputs which converges the interest of many researchers to explore it in depth. Latest preprocessing technique Real ESRGAN (Enhanced super resolution generative adversarial network) and GFPGAN (Generative facial prior GAN) are proving their efficacy in providing high resolution dataset. <b>Objective:</b> Optimizer plays a vital role in upgrading the functioning of CNN model. Different optimizers like Gradient descent, Stochastic Gradient descent, Adagrad, Adadelta and Adam etc. are used for classification and segmentation of Medical image but they suffer from slow processing due to their large memory requirement. Stochastic Gradient descent suffers from high variance and is computationally expensive. Dead neuron problem also proves to detrimental to the performance of most of the optimizers. A new optimization technique Gradient Centralization is providing the unparalleled result in terms of generalization and execution time. <b>Method:</b> Our paper explores the next factor which is the employment of new optimization technique, Gradient centralization (GC) to our integrated framework (Model with advanced preprocessing technique). <b>Result and conclusion:</b> Integrated Framework of Real ESRGAN and GFPGAN with Gradient centralization provides an optimal solution for deep learning models in terms of Execution time and Loss factor improvement.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"30 2","pages":"14604582241255584"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241255584","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Application of Convolutional neural network in spectrum of Medical image analysis are providing benchmark outputs which converges the interest of many researchers to explore it in depth. Latest preprocessing technique Real ESRGAN (Enhanced super resolution generative adversarial network) and GFPGAN (Generative facial prior GAN) are proving their efficacy in providing high resolution dataset. Objective: Optimizer plays a vital role in upgrading the functioning of CNN model. Different optimizers like Gradient descent, Stochastic Gradient descent, Adagrad, Adadelta and Adam etc. are used for classification and segmentation of Medical image but they suffer from slow processing due to their large memory requirement. Stochastic Gradient descent suffers from high variance and is computationally expensive. Dead neuron problem also proves to detrimental to the performance of most of the optimizers. A new optimization technique Gradient Centralization is providing the unparalleled result in terms of generalization and execution time. Method: Our paper explores the next factor which is the employment of new optimization technique, Gradient centralization (GC) to our integrated framework (Model with advanced preprocessing technique). Result and conclusion: Integrated Framework of Real ESRGAN and GFPGAN with Gradient centralization provides an optimal solution for deep learning models in terms of Execution time and Loss factor improvement.
期刊介绍:
Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.