Reconstructing developmental trajectories using latent dynamical systems and time-resolved transcriptomics.

Rory J Maizels, Daniel M Snell, James Briscoe
{"title":"Reconstructing developmental trajectories using latent dynamical systems and time-resolved transcriptomics.","authors":"Rory J Maizels, Daniel M Snell, James Briscoe","doi":"10.1016/j.cels.2024.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>The snapshot nature of single-cell transcriptomics presents a challenge for studying the dynamics of cell fate decisions. Metabolic labeling and splicing can provide temporal information at single-cell level, but current methods have limitations. Here, we present a framework that overcomes these limitations: experimentally, we developed sci-FATE2, an optimized method for metabolic labeling with increased data quality, which we used to profile 45,000 embryonic stem (ES) cells differentiating into neural tube identities. Computationally, we developed a two-stage framework for dynamical modeling: VelvetVAE, a variational autoencoder (VAE) for velocity inference that outperforms all other tools tested, and VelvetSDE, a neural stochastic differential equation (nSDE) framework for simulating trajectory distributions. These recapitulate underlying dataset distributions and capture features such as decision boundaries between alternative fates and fate-specific gene expression. These methods recast single-cell analyses from descriptions of observed data to models of the dynamics that generated them, providing a framework for investigating developmental fate decisions.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.04.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The snapshot nature of single-cell transcriptomics presents a challenge for studying the dynamics of cell fate decisions. Metabolic labeling and splicing can provide temporal information at single-cell level, but current methods have limitations. Here, we present a framework that overcomes these limitations: experimentally, we developed sci-FATE2, an optimized method for metabolic labeling with increased data quality, which we used to profile 45,000 embryonic stem (ES) cells differentiating into neural tube identities. Computationally, we developed a two-stage framework for dynamical modeling: VelvetVAE, a variational autoencoder (VAE) for velocity inference that outperforms all other tools tested, and VelvetSDE, a neural stochastic differential equation (nSDE) framework for simulating trajectory distributions. These recapitulate underlying dataset distributions and capture features such as decision boundaries between alternative fates and fate-specific gene expression. These methods recast single-cell analyses from descriptions of observed data to models of the dynamics that generated them, providing a framework for investigating developmental fate decisions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用潜在动力系统和时间分辨转录组学重建发育轨迹
单细胞转录组学的快照性质为研究细胞命运的动态决定带来了挑战。代谢标记和剪接可提供单细胞水平的时间信息,但目前的方法存在局限性。在这里,我们提出了一个克服这些局限性的框架:在实验方面,我们开发了 sci-FATE2,这是一种提高数据质量的代谢标记优化方法,我们用它来分析 45,000 个分化成神经管特征的胚胎干(ES)细胞。在计算方面,我们开发了一个两阶段动态建模框架:VelvetVAE是一种用于速度推断的变异自动编码器(VAE),性能优于所有其他测试工具;VelvetSDE是一种用于模拟轨迹分布的神经随机微分方程(nSDE)框架。这些方法再现了潜在的数据集分布,并捕捉到了替代命运和命运特异性基因表达之间的决策边界等特征。这些方法将单细胞分析从观测数据的描述重塑为产生这些数据的动力学模型,为研究发育命运的决定提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plausible, robust biological oscillations through allelic buffering. Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. Automated single-cell omics end-to-end framework with data-driven batch inference. Entrainment and multi-stability of the p53 oscillator in human cells. Protein turnover regulation is critical for influenza A virus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1