Advancements in Glucose Monitoring: A Thin Film ZnO-Nanoflakes Based Highly Sensitive Wearable Biosensor for Noninvasive Sweat-Based Point-of-Care Monitoring for Diabetes
G M Mehedi Hossain, A. Jalal, Nezih Pala, Fahmida Alam
{"title":"Advancements in Glucose Monitoring: A Thin Film ZnO-Nanoflakes Based Highly Sensitive Wearable Biosensor for Noninvasive Sweat-Based Point-of-Care Monitoring for Diabetes","authors":"G M Mehedi Hossain, A. Jalal, Nezih Pala, Fahmida Alam","doi":"10.1149/11313.0035ecst","DOIUrl":null,"url":null,"abstract":"In the contemporary global landscape, diabetes is a concerning presence that contributes to noteworthy mortality rates. The etiology of this condition involves a subtle interaction between insulin deficiency and elevated blood sugar levels. Against this backdrop, the necessity for prompt, accurate, and continuous noninvasive monitoring of glucose concentrations becomes notably evident. The electrochemical flexible glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on ZnO nanoflakes, possessing a 20nm thickness, and synthesized on an Au-coated stretchable PET film. The sensitivity of the flexible biosensor was determined by 29.97μA/decade/cm², and the minimum detection limit was 1μM. The coefficient of determination was 97.76%, which is significantly linear.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"3 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11313.0035ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the contemporary global landscape, diabetes is a concerning presence that contributes to noteworthy mortality rates. The etiology of this condition involves a subtle interaction between insulin deficiency and elevated blood sugar levels. Against this backdrop, the necessity for prompt, accurate, and continuous noninvasive monitoring of glucose concentrations becomes notably evident. The electrochemical flexible glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on ZnO nanoflakes, possessing a 20nm thickness, and synthesized on an Au-coated stretchable PET film. The sensitivity of the flexible biosensor was determined by 29.97μA/decade/cm², and the minimum detection limit was 1μM. The coefficient of determination was 97.76%, which is significantly linear.