James Bisbee, Joshua D. Clinton, C. Dorff, Brenton Kenkel, Jennifer M. Larson
{"title":"Synthetic Replacements for Human Survey Data? The Perils of Large Language Models","authors":"James Bisbee, Joshua D. Clinton, C. Dorff, Brenton Kenkel, Jennifer M. Larson","doi":"10.1017/pan.2024.5","DOIUrl":null,"url":null,"abstract":"\n Large language models (LLMs) offer new research possibilities for social scientists, but their potential as “synthetic data” is still largely unknown. In this paper, we investigate how accurately the popular LLM ChatGPT can recover public opinion, prompting the LLM to adopt different “personas” and then provide feeling thermometer scores for 11 sociopolitical groups. The average scores generated by ChatGPT correspond closely to the averages in our baseline survey, the 2016–2020 American National Election Study (ANES). Nevertheless, sampling by ChatGPT is not reliable for statistical inference: there is less variation in responses than in the real surveys, and regression coefficients often differ significantly from equivalent estimates obtained using ANES data. We also document how the distribution of synthetic responses varies with minor changes in prompt wording, and we show how the same prompt yields significantly different results over a 3-month period. Altogether, our findings raise serious concerns about the quality, reliability, and reproducibility of synthetic survey data generated by LLMs.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"62 21","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2024.5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Large language models (LLMs) offer new research possibilities for social scientists, but their potential as “synthetic data” is still largely unknown. In this paper, we investigate how accurately the popular LLM ChatGPT can recover public opinion, prompting the LLM to adopt different “personas” and then provide feeling thermometer scores for 11 sociopolitical groups. The average scores generated by ChatGPT correspond closely to the averages in our baseline survey, the 2016–2020 American National Election Study (ANES). Nevertheless, sampling by ChatGPT is not reliable for statistical inference: there is less variation in responses than in the real surveys, and regression coefficients often differ significantly from equivalent estimates obtained using ANES data. We also document how the distribution of synthetic responses varies with minor changes in prompt wording, and we show how the same prompt yields significantly different results over a 3-month period. Altogether, our findings raise serious concerns about the quality, reliability, and reproducibility of synthetic survey data generated by LLMs.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.