{"title":"Optimization of dual-function suspension structures using particle swarm optimization approaches","authors":"Guohong Wang, Farong Kou","doi":"10.3233/jae-220282","DOIUrl":null,"url":null,"abstract":"The suspension system integrating both vibration control and energy harvesting capabilities is denoted as Dual-function Suspension (DFS). The principal objectives for DFS encompass lightweight structure, high output force, extensive adjustability in damping, and minimized energy consumption. In pursuit of optimizing the linear motor and magnetorheological damper (MRD) amalgamated into the DFS, a multi-objective Particle Swarm Optimization (PSO) algorithm is conceived, emphasizing primary and secondary objectives to enhance the holistic performance of the DFS. A comprehensive mathematical model of the DFS is established, and subsequent to this modeling, the structural parameters of DFS are meticulously analyzed. Drawing upon the insights from this analysis, primary and supplementary optimization objectives are delineated, employing PSO for the refinement of the DFS structure. Following this, the Pareto solution set, derived from the optimization process, is judiciously selected utilizing fuzzy theorem principles. The outcomes reveal that, under the constraints of unaltered suspension packaging dimensions and overall energy consumption, the optimized suspension system manifests a 50% augmentation in output force, a 30% expansion in adjustable damping range, and a 39% reduction in thrust ripple compared to its pre-optimized state.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220282","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The suspension system integrating both vibration control and energy harvesting capabilities is denoted as Dual-function Suspension (DFS). The principal objectives for DFS encompass lightweight structure, high output force, extensive adjustability in damping, and minimized energy consumption. In pursuit of optimizing the linear motor and magnetorheological damper (MRD) amalgamated into the DFS, a multi-objective Particle Swarm Optimization (PSO) algorithm is conceived, emphasizing primary and secondary objectives to enhance the holistic performance of the DFS. A comprehensive mathematical model of the DFS is established, and subsequent to this modeling, the structural parameters of DFS are meticulously analyzed. Drawing upon the insights from this analysis, primary and supplementary optimization objectives are delineated, employing PSO for the refinement of the DFS structure. Following this, the Pareto solution set, derived from the optimization process, is judiciously selected utilizing fuzzy theorem principles. The outcomes reveal that, under the constraints of unaltered suspension packaging dimensions and overall energy consumption, the optimized suspension system manifests a 50% augmentation in output force, a 30% expansion in adjustable damping range, and a 39% reduction in thrust ripple compared to its pre-optimized state.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.