A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2024-05-16 DOI:10.1155/2024/9004308
Zhengxin Tao, Shifeng Zhang
{"title":"A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints","authors":"Zhengxin Tao, Shifeng Zhang","doi":"10.1155/2024/9004308","DOIUrl":null,"url":null,"abstract":"Aiming at solving trajectory planning problem with complex distributed no-fly zone constraints, this paper proposed a novel obstacle avoidance strategy. For longitudinal motion, an angle of attack adjustment method is employed to adjust lift and design the angle of attack profile, while adjusting the bank angle for range and altitude correction to meet terminal constraints. For lateral motion, this paper developed enhanced attractive, repulsive, and velocity potential fields. Combined with the proposed repulsive force reconstruction method, this effectively resolves the overmaneuvering problem of traditional artificial potential field methods (APFMs) for vehicle. In order to avoid mismatched magnitudes of attractive and repulsive forces, a complementary no-fly zone avoidance strategy based on minimum turn radius is introduced, updating the bank angle command during no-fly zone avoidance. Simulation results indicate that the proposed strategy can address the avoidance of sudden threat, proving to be feasible and effective for handling complex distributed no-fly zone avoidance problems.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/9004308","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at solving trajectory planning problem with complex distributed no-fly zone constraints, this paper proposed a novel obstacle avoidance strategy. For longitudinal motion, an angle of attack adjustment method is employed to adjust lift and design the angle of attack profile, while adjusting the bank angle for range and altitude correction to meet terminal constraints. For lateral motion, this paper developed enhanced attractive, repulsive, and velocity potential fields. Combined with the proposed repulsive force reconstruction method, this effectively resolves the overmaneuvering problem of traditional artificial potential field methods (APFMs) for vehicle. In order to avoid mismatched magnitudes of attractive and repulsive forces, a complementary no-fly zone avoidance strategy based on minimum turn radius is introduced, updating the bank angle command during no-fly zone avoidance. Simulation results indicate that the proposed strategy can address the avoidance of sudden threat, proving to be feasible and effective for handling complex distributed no-fly zone avoidance problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有复杂分布式禁飞区约束条件的高超音速飞行器新策略
为了解决具有复杂分布式禁飞区约束的飞行轨迹规划问题,本文提出了一种新颖的避障策略。在纵向运动方面,采用攻角调整方法来调整升力和设计攻角剖面,同时调整倾角进行航程和高度修正,以满足终端约束条件。对于横向运动,本文开发了增强的吸引力、排斥力和速度势场。结合提出的斥力重构方法,有效解决了传统人工势场方法(APFMs)的飞行器过度操纵问题。为了避免吸引力和斥力的大小不匹配,引入了一种基于最小转弯半径的互补式禁飞区规避策略,在禁飞区规避过程中更新倾角指令。仿真结果表明,所提出的策略可以应对突如其来的威胁,对于处理复杂的分布式禁飞区规避问题是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints Development of Anisogrid Lattice Composite Structures for Fighter Wing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1