Deep Learning-Assisted Design of Bilayer Nanowire Gratings for High-Performance MWIR Polarizers

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-05-16 DOI:10.1002/admt.202302176
Junghyun Lee, Junhyuk Oh, Hyung-gun Chi, Minseok Lee, Jehwan Hwang, Seungjin Jeong, Sang-Woo Kang, Haeseong Jee, Hagyoul Bae, Jae-Sang Hyun, Jun Oh Kim, Bongjoong Kim
{"title":"Deep Learning-Assisted Design of Bilayer Nanowire Gratings for High-Performance MWIR Polarizers","authors":"Junghyun Lee,&nbsp;Junhyuk Oh,&nbsp;Hyung-gun Chi,&nbsp;Minseok Lee,&nbsp;Jehwan Hwang,&nbsp;Seungjin Jeong,&nbsp;Sang-Woo Kang,&nbsp;Haeseong Jee,&nbsp;Hagyoul Bae,&nbsp;Jae-Sang Hyun,&nbsp;Jun Oh Kim,&nbsp;Bongjoong Kim","doi":"10.1002/admt.202302176","DOIUrl":null,"url":null,"abstract":"<p>Optical metamaterials have revolutionized imaging capabilities by manipulating light-matter interactions at the nanoscale beyond the diffraction limit. Bilayer nanowire grating configurations exhibit significant potential as exceptional elements for high-performance polarimetric imaging systems. However, conventional computational approaches for predicting electromagnetic responses are time-consuming and labor-intensive, and thereby, the practical implementation remains challenging through an iterative design, analysis, and fabrication process. Here, a deep learning-based design process is presented utilizing an artificial neural network (ANN) trained on finite element method (FEM) simulations that enables the prediction of bilayer nanowire gratings-based electromagnetic responses. The study validates predictions through nanoimprinted bilayer nanowire gratings, demonstrating the reliability of the ANN's predictions. Furthermore, the research identifies critical geometric parameters significantly influencing transverse magnetic (TM) and transverse electric (TE) transmission. The ANN model effectively tailors design for specific mid-wavelength infrared (MWIR) wavelengths, which may provide a practical tool for rapidly designing and optimizing metamaterial for high-performance polarizers.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202302176","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302176","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical metamaterials have revolutionized imaging capabilities by manipulating light-matter interactions at the nanoscale beyond the diffraction limit. Bilayer nanowire grating configurations exhibit significant potential as exceptional elements for high-performance polarimetric imaging systems. However, conventional computational approaches for predicting electromagnetic responses are time-consuming and labor-intensive, and thereby, the practical implementation remains challenging through an iterative design, analysis, and fabrication process. Here, a deep learning-based design process is presented utilizing an artificial neural network (ANN) trained on finite element method (FEM) simulations that enables the prediction of bilayer nanowire gratings-based electromagnetic responses. The study validates predictions through nanoimprinted bilayer nanowire gratings, demonstrating the reliability of the ANN's predictions. Furthermore, the research identifies critical geometric parameters significantly influencing transverse magnetic (TM) and transverse electric (TE) transmission. The ANN model effectively tailors design for specific mid-wavelength infrared (MWIR) wavelengths, which may provide a practical tool for rapidly designing and optimizing metamaterial for high-performance polarizers.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习辅助设计用于高性能中波红外偏振器的双层纳米线光栅
光学超材料通过在纳米尺度上操纵光与物质的相互作用,超越了衍射极限,从而彻底改变了成像能力。双层纳米线光栅配置作为高性能偏振成像系统的特殊元件,展现出巨大的潜力。然而,预测电磁响应的传统计算方法既耗时又耗力,因此,通过迭代设计、分析和制造过程实现实际应用仍具有挑战性。本文介绍了一种基于深度学习的设计流程,利用在有限元法(FEM)模拟基础上训练的人工神经网络(ANN)来预测基于双层纳米线光栅的电磁响应。研究通过纳米压印双层纳米线光栅验证了预测结果,证明了人工神经网络预测结果的可靠性。此外,研究还确定了对横向磁(TM)和横向电(TE)传输有重大影响的关键几何参数。ANN模型能有效地针对特定的中波红外(MWIR)波长进行设计,为快速设计和优化高性能偏振器的超材料提供了实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
Ambipolar Charge Injection and Bright Light Emission in Hybrid Oxide/Polymer Transistors Doped with Poly(9-Vinylcarbazole) Based Polyelectrolytes (Adv. Mater. Technol. 20/2024) 3D Printed Supercapacitors Based on Laser-derived Hierarchical Nanocomposites of Bimetallic Co/Zn Metal-Organic Framework and Graphene Oxide (Adv. Mater. Technol. 20/2024) Hierarchical Composites Patterned via 3D Printed Cellular Fluidics (Adv. Mater. Technol. 20/2024) An Artificial Tactile Perception System with Spatio-Temporal Recognition Capability (Adv. Mater. Technol. 20/2024) Masthead: (Adv. Mater. Technol. 20/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1