Donghai Ding, Wangjiao Ding, Jiexin Jiao, Shaonan Liu, Endong Jin, Guoqing Xiao, Li Zhang, Changkun Lei, Chunzhuo Feng, Yanjun Li
{"title":"Effects of volume fraction of short-cut quartz fibers on mechanical and thermal properties of SiO2f/SiO2 composites","authors":"Donghai Ding, Wangjiao Ding, Jiexin Jiao, Shaonan Liu, Endong Jin, Guoqing Xiao, Li Zhang, Changkun Lei, Chunzhuo Feng, Yanjun Li","doi":"10.1007/s41779-024-01034-6","DOIUrl":null,"url":null,"abstract":"<div><p>SiO<sub>2f</sub>/SiO<sub>2</sub> composites were prepared by compression molding and sintering using short-cut quartz fibers as reinforcement. The effects of fiber volume fraction (15%∼35%) on bulk density, apparent porosity, and mechanical and thermal properties of the composites were investigated. The results indicated that the samples with 25% fiber volume fraction had the best comprehensive performance, with an apparent porosity and compressive strength of 36% and 46.3 MPa, respectively. The flexural strength of the samples was 13.9 MPa, which represented a 90% increase compared to the samples without fibers. It was attributed to the occurrence of fiber debonding and fiber pull-out in the porous matrix. Meanwhile, the residual strength ratio of the samples after 20 thermal shocks was 74.8%. In addition, the average coefficient of thermal expansion was 0.95 × 10<sup>− 6</sup>/℃ at 300 ℃∼700 ℃ and the thermal conductivity was 0.388 W·m<sup>− 1</sup>·K<sup>− 1</sup> at 800 °C. This approach can satisfy the requirements of low cost, fast preparation of SiO<sub>2f</sub>/SiO<sub>2</sub> composites, which offers the prospect of its application in the integration of load-bearing and thermal insulation.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 3","pages":"689 - 699"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41779-024-01034-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-024-01034-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
SiO2f/SiO2 composites were prepared by compression molding and sintering using short-cut quartz fibers as reinforcement. The effects of fiber volume fraction (15%∼35%) on bulk density, apparent porosity, and mechanical and thermal properties of the composites were investigated. The results indicated that the samples with 25% fiber volume fraction had the best comprehensive performance, with an apparent porosity and compressive strength of 36% and 46.3 MPa, respectively. The flexural strength of the samples was 13.9 MPa, which represented a 90% increase compared to the samples without fibers. It was attributed to the occurrence of fiber debonding and fiber pull-out in the porous matrix. Meanwhile, the residual strength ratio of the samples after 20 thermal shocks was 74.8%. In addition, the average coefficient of thermal expansion was 0.95 × 10− 6/℃ at 300 ℃∼700 ℃ and the thermal conductivity was 0.388 W·m− 1·K− 1 at 800 °C. This approach can satisfy the requirements of low cost, fast preparation of SiO2f/SiO2 composites, which offers the prospect of its application in the integration of load-bearing and thermal insulation.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted