A predictive algorithm for the analysis of AMR trends and healthcare decision support

Tochukwu Agboeze, Oluwasegun I. Daramola, Ayobami Akomolafe, Roqeeb Adedeji, Julius Markwei
{"title":"A predictive algorithm for the analysis of AMR trends and healthcare decision support","authors":"Tochukwu Agboeze, Oluwasegun I. Daramola, Ayobami Akomolafe, Roqeeb Adedeji, Julius Markwei","doi":"10.12688/wellcomeopenres.21289.1","DOIUrl":null,"url":null,"abstract":"Background Translating available AMR surveillance data to observe evolving patterns of microbial resistance to antimicrobial agents while identifying regions at high risk of resistant cases and serving as a decision-support tool is an aspect of AMR surveillance that is rarely explored nationwide and uncommon globally. Therefore, we developed a two-tier dashboard algorithm (PATHFINDER) that can analyse antimicrobial surveillance datasets, observe evolving global spatiotemporal patterns of AMR, and integrate local AMR gene resources to identify functional AMR determinant genes and antibiotic classes from the query organism genome. Methods The Python-based plotly library was used to develop the interactive variables of the Antimicrobial Testing Leadership Surveillance (ATLAS) dataset in an adjustable spatiotemporal environment. A lightweight database containing multiple known resistant genes from the ResFinder database was used as a prototype to identify unique AMR determinant genes from query nucleotide sequences. In R, a function was created to accept query genome sequences and generate Kmers of length 250 using the blaster package. The GPT-4 API plug-in was embedded with adequate prompt parsing for it as an interpretation LLM function. Results AMR trendline plots were designed for invasive infections and customised based on the class of antibiotics and infection types on the surveillance dashboard. The decision-support tool correctly predicted resistant genes with a sensitivity of 75% on pre-confirmed organisms. The observed specificity score (51.5%) was due to the need for more filtering and optimisation and not to PATHFINDER performance. When run against the reference gene dataset containing pre-identified AMR genes, the support tool generated a BLAST table with identified AMR gene determinants in a nucleotide sequence. Conclusions The PATHFINDER algorithm has the potential to revolutionise healthcare decision-making. It can inform targeted interventions, guide antimicrobial stewardship efforts at a national level, promote appropriate antibiotic use, and significantly reduce the risk of resistance development.","PeriodicalId":508490,"journal":{"name":"Wellcome Open Research","volume":"118 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wellcome Open Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/wellcomeopenres.21289.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background Translating available AMR surveillance data to observe evolving patterns of microbial resistance to antimicrobial agents while identifying regions at high risk of resistant cases and serving as a decision-support tool is an aspect of AMR surveillance that is rarely explored nationwide and uncommon globally. Therefore, we developed a two-tier dashboard algorithm (PATHFINDER) that can analyse antimicrobial surveillance datasets, observe evolving global spatiotemporal patterns of AMR, and integrate local AMR gene resources to identify functional AMR determinant genes and antibiotic classes from the query organism genome. Methods The Python-based plotly library was used to develop the interactive variables of the Antimicrobial Testing Leadership Surveillance (ATLAS) dataset in an adjustable spatiotemporal environment. A lightweight database containing multiple known resistant genes from the ResFinder database was used as a prototype to identify unique AMR determinant genes from query nucleotide sequences. In R, a function was created to accept query genome sequences and generate Kmers of length 250 using the blaster package. The GPT-4 API plug-in was embedded with adequate prompt parsing for it as an interpretation LLM function. Results AMR trendline plots were designed for invasive infections and customised based on the class of antibiotics and infection types on the surveillance dashboard. The decision-support tool correctly predicted resistant genes with a sensitivity of 75% on pre-confirmed organisms. The observed specificity score (51.5%) was due to the need for more filtering and optimisation and not to PATHFINDER performance. When run against the reference gene dataset containing pre-identified AMR genes, the support tool generated a BLAST table with identified AMR gene determinants in a nucleotide sequence. Conclusions The PATHFINDER algorithm has the potential to revolutionise healthcare decision-making. It can inform targeted interventions, guide antimicrobial stewardship efforts at a national level, promote appropriate antibiotic use, and significantly reduce the risk of resistance development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分析 AMR 趋势和医疗决策支持的预测算法
背景 将现有的 AMR 监测数据转化为观察微生物对抗菌药物耐药性演变模式的数据,同时确定耐药病例高风险地区,并将其作为决策支持工具,这是 AMR 监测的一个方面,但在全国范围内鲜有探索,在全球范围内也不常见。因此,我们开发了一种双层仪表板算法(PATHFINDER),它可以分析抗微生物监测数据集,观察不断演变的全球 AMR 时空模式,并整合本地 AMR 基因资源,从查询生物基因组中识别功能性 AMR 决定基因和抗生素类别。方法 使用基于 Python 的 plotly 库,在可调整的时空环境中开发抗菌药物检测领导力监测(ATLAS)数据集的交互式变量。以 ResFinder 数据库中包含多个已知耐药基因的轻量级数据库为原型,从查询核苷酸序列中识别出独特的 AMR 决定基因。在 R 中创建了一个函数,用于接受查询的基因组序列,并使用 blaster 软件包生成长度为 250 的 Kmers。嵌入了 GPT-4 API 插件,并对其进行了充分的提示解析,将其作为一个解释 LLM 的函数。结果 针对入侵性感染设计了 AMR 趋势线图,并根据监测仪表板上的抗生素类别和感染类型进行了定制。决策支持工具能正确预测耐药基因,对预先确认的生物体的灵敏度为 75%。观察到的特异性得分(51.5%)是由于需要进行更多过滤和优化,而非 PATHFINDER 的性能所致。当与包含预先确定的 AMR 基因的参考基因数据集运行时,支持工具生成了一个 BLAST 表,其中包含核苷酸序列中已确定的 AMR 基因决定因子。结论 PATHFINDER 算法有可能彻底改变医疗决策。它可以为有针对性的干预措施提供信息,指导国家层面的抗菌药物管理工作,促进抗生素的合理使用,并显著降低耐药性产生的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The genome sequence of the bloodfluke planorb, Biomphalaria glabrata (Say, 1818) The genome sequence of the blonde ray, Raja brachyura Lafont, 1871 The genome sequence of the Northern Bottlenose Whale, Hyperoodon ampullatus (Forster, 1770) The genome sequence of the Maiden’s Blush moth, Cyclophora punctaria (Linnaeus, 1758) The genome sequence of a jewel beetle, Agrilus biguttatus (Fabricius, 1776)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1