R. T. Prabu, Ashok Raja, Vanitha Lingaraj, Ferlin Deva Shahila, Thankamony Devakhi Subha, Ganekanti Naresh, Firoz Mostafa Ali
{"title":"Various graded index plastic optical fiber performance signature capability with the optimum dispersion control for indoor coverage applications","authors":"R. T. Prabu, Ashok Raja, Vanitha Lingaraj, Ferlin Deva Shahila, Thankamony Devakhi Subha, Ganekanti Naresh, Firoz Mostafa Ali","doi":"10.1515/joc-2024-0069","DOIUrl":null,"url":null,"abstract":"\n This work has clarified the various graded index plastic optical fiber performance signature with the optimum dispersion control for indoor coverage applications. The plastic optical fibers that are deeply employed namely Polymethyl mathacrylate (PMMA), Epoxy, Polyfluorene and Cyclotene. Various plastic optical fiber dispersion is demonstrated against temperature variations. The different plastic fibers pulse broadening is clarified versus temperature variations. The previous plastic optical fibers types with respect to refractive index configuration and number of modes are clarified. Previous studies on PMMA/CYTOP plastic optical fibers attenuation is clarified against wavelength band variations. Various transmission techniques are applied to measure the fiber bandwidth and fiber channel bit rate. These transmission techniques are MTDM, NRZ and RZ coding. Different plastic fiber bandwidth against fiber channel distance is demonstrated based on NRZ, RZ and MTDM coding at room temperature. Different plastic fiber channel bit rate against fiber channel distance is studied and clarified based on NRZ, RZ and MTDM coding at room temperature. The choice of these plastic fibers are high temperature stability and more flexibility/reliability than other plastic fibers. The dispersion of these proposed plastic fibers can be controlled and managed with the control of temperature variations.","PeriodicalId":509395,"journal":{"name":"Journal of Optical Communications","volume":"65 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work has clarified the various graded index plastic optical fiber performance signature with the optimum dispersion control for indoor coverage applications. The plastic optical fibers that are deeply employed namely Polymethyl mathacrylate (PMMA), Epoxy, Polyfluorene and Cyclotene. Various plastic optical fiber dispersion is demonstrated against temperature variations. The different plastic fibers pulse broadening is clarified versus temperature variations. The previous plastic optical fibers types with respect to refractive index configuration and number of modes are clarified. Previous studies on PMMA/CYTOP plastic optical fibers attenuation is clarified against wavelength band variations. Various transmission techniques are applied to measure the fiber bandwidth and fiber channel bit rate. These transmission techniques are MTDM, NRZ and RZ coding. Different plastic fiber bandwidth against fiber channel distance is demonstrated based on NRZ, RZ and MTDM coding at room temperature. Different plastic fiber channel bit rate against fiber channel distance is studied and clarified based on NRZ, RZ and MTDM coding at room temperature. The choice of these plastic fibers are high temperature stability and more flexibility/reliability than other plastic fibers. The dispersion of these proposed plastic fibers can be controlled and managed with the control of temperature variations.