Applying Deep Learning Technique to Chiral Magnetic Wave Search

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-16 DOI:10.1088/1674-1137/ad4c5d
Xu-Guang 黄旭光 Huang, Yuanzhuo Zhao
{"title":"Applying Deep Learning Technique to Chiral Magnetic Wave Search","authors":"Xu-Guang 黄旭光 Huang, Yuanzhuo Zhao","doi":"10.1088/1674-1137/ad4c5d","DOIUrl":null,"url":null,"abstract":"\n The chiral magnetic wave (CMW) is a collective mode in quark-gluon plasma originated from the chiral magnetic effect (CME) and chiral separation effect. Its detection in heavy-ion collisions is challenging due to significant background contamination. In Ref.~\\cite{Zhao:2021yjo}, we have constructed a neural network which can accurately identify the CME-related signal from the final-state pion spectra. In this paper, we generalize such a neural network to the case of CMW search. We show that, after a updated training, the neural network can effectively recognize the CMW-related signal. Additionally, we assess the performance of the neural network compared to other known methods for CMW search.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"28 3","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad4c5d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The chiral magnetic wave (CMW) is a collective mode in quark-gluon plasma originated from the chiral magnetic effect (CME) and chiral separation effect. Its detection in heavy-ion collisions is challenging due to significant background contamination. In Ref.~\cite{Zhao:2021yjo}, we have constructed a neural network which can accurately identify the CME-related signal from the final-state pion spectra. In this paper, we generalize such a neural network to the case of CMW search. We show that, after a updated training, the neural network can effectively recognize the CMW-related signal. Additionally, we assess the performance of the neural network compared to other known methods for CMW search.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将深度学习技术应用于手性磁波搜索
手性磁波(CMW)是夸克-胶子等离子体中的一种集体模式,源于手性磁效应(CME)和手性分离效应。由于严重的背景污染,在重离子碰撞中探测CMW具有挑战性。在Ref.~\cite{Zhao:2021yjo}中,我们构建了一个神经网络,可以从终态先驱谱中准确地识别CME相关信号。在本文中,我们将这种神经网络推广到CMW搜索中。结果表明,经过更新训练后,神经网络可以有效识别 CMW 相关信号。此外,我们还评估了神经网络与其他已知的 CMW 搜索方法相比的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Issue Editorial Masthead Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Carbon Nanotube-Enhanced Liquid Metal Composite Ink for Strain Sensing and Digital Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1