Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-16 DOI:10.3390/chemosensors12050083
Fazia Mechai, Ahmad Al Shboul, Mohand Outahar Bensidhoum, Hossein Anabestani, Mohsen Ketabi, Ricardo Izquierdo
{"title":"Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications","authors":"Fazia Mechai, Ahmad Al Shboul, Mohand Outahar Bensidhoum, Hossein Anabestani, Mohsen Ketabi, Ricardo Izquierdo","doi":"10.3390/chemosensors12050083","DOIUrl":null,"url":null,"abstract":"This research contributes to work on synthesizing zinc oxide nanoparticles (ZnO NPs) at room temperature (RT) and their utilization in flexible gas sensors. RT ZnO NP synthesis with a basicity solution (pH ≈ 13) demonstrates an efficient method for synthesizing well-crystalline ZnO NPs (RT.pH13) comparable to those synthesized by the hydrothermal method (hyd.C). The RT.pH13 achieved a high thermal stability with minimal organic reside impurities (~4.2 wt%), 30–80 nm particle size distribution, and a specific surface area (14 m2 g−1). The synthesized pre- and post-calcinated RT.pH13 NPs were then incorporated into flexible sensors for gas sensing applications at ambient conditions (RT and relative humidity of 30–50%). The pre-calcinated ZnO-based sensor (RT.pH13) demonstrated superior sensitivity to styrene and acetic acid and lower sensitivity to dimethyl-6-octenal. The calcinated ZnO-based sensor (RT.pH13.C) exhibited lower sensitivity to styrene and acetic acid, but heightened sensitivity to benzene, acetone, and ethanol. This suggests a correlation between sensitivity and structural transformations following calcination. The investigation of the sensing mechanisms highlighted the role of surface properties in the sensors’ affinity for specific gas molecules and temperature and humidity variations. The study further explored the sensors’ mechanical flexibility, which is crucial for flexible Internet of Things (IoT) applications.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"35 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/chemosensors12050083","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This research contributes to work on synthesizing zinc oxide nanoparticles (ZnO NPs) at room temperature (RT) and their utilization in flexible gas sensors. RT ZnO NP synthesis with a basicity solution (pH ≈ 13) demonstrates an efficient method for synthesizing well-crystalline ZnO NPs (RT.pH13) comparable to those synthesized by the hydrothermal method (hyd.C). The RT.pH13 achieved a high thermal stability with minimal organic reside impurities (~4.2 wt%), 30–80 nm particle size distribution, and a specific surface area (14 m2 g−1). The synthesized pre- and post-calcinated RT.pH13 NPs were then incorporated into flexible sensors for gas sensing applications at ambient conditions (RT and relative humidity of 30–50%). The pre-calcinated ZnO-based sensor (RT.pH13) demonstrated superior sensitivity to styrene and acetic acid and lower sensitivity to dimethyl-6-octenal. The calcinated ZnO-based sensor (RT.pH13.C) exhibited lower sensitivity to styrene and acetic acid, but heightened sensitivity to benzene, acetone, and ethanol. This suggests a correlation between sensitivity and structural transformations following calcination. The investigation of the sensing mechanisms highlighted the role of surface properties in the sensors’ affinity for specific gas molecules and temperature and humidity variations. The study further explored the sensors’ mechanical flexibility, which is crucial for flexible Internet of Things (IoT) applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH 值对室温合成用于柔性气体传感器的氧化锌纳米粒子的影响
这项研究有助于在室温(RT)下合成氧化锌纳米粒子(ZnO NPs)及其在柔性气体传感器中的应用。用碱性溶液(pH ≈ 13)合成 RT 氧化锌纳米粒子(RT.pH13)展示了一种合成结晶良好的氧化锌纳米粒子(RT.pH13)的有效方法,其效果可与水热法(hyd.C)合成的氧化锌纳米粒子相媲美。RT.pH13 具有很高的热稳定性,有机残留杂质极少(约 4.2 wt%),粒度分布为 30-80 nm,比表面积为 14 m2 g-1。合成的钙化前和钙化后 RT.pH13 NPs 被集成到柔性传感器中,用于环境条件(RT 和 30-50% 的相对湿度)下的气体传感应用。预煅烧氧化锌传感器(RT.pH13)对苯乙烯和醋酸的灵敏度较高,而对二甲基-6-辛烯醛的灵敏度较低。煅烧过的氧化锌基传感器(RT.pH13.C)对苯乙烯和乙酸的灵敏度较低,但对苯、丙酮和乙醇的灵敏度较高。这表明灵敏度与煅烧后的结构转变之间存在关联。对传感机制的研究突出了表面特性在传感器对特定气体分子的亲和力以及温度和湿度变化中的作用。研究进一步探讨了传感器的机械灵活性,这对于灵活的物联网(IoT)应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Issue Editorial Masthead Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Carbon Nanotube-Enhanced Liquid Metal Composite Ink for Strain Sensing and Digital Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1