Inverse estimation of material model parameters using Bayesian data assimilation

A. Yamanaka
{"title":"Inverse estimation of material model parameters using Bayesian data assimilation","authors":"A. Yamanaka","doi":"10.21741/9781644903131-132","DOIUrl":null,"url":null,"abstract":"Abstract. This study proposes a new method for the inverse estimation of the parameters included in material models from full-field measurement data that are obtained using the digital image correlation method. This approach is based on data assimilation according to the Bayes’ theorem (Bayesian data assimilation). In this study, we demonstrate the assimilation of experimental data obtained from uniaxial tensile, forming, and fracture tests of aluminum alloys into elastoplastic finite element and phase-field crack propagation simulations. The proposed method allows the simultaneous estimation of multiple material model parameters. The Bayesian data assimilation is a promising methodology for estimating the parameters of different material models and constructing digital twins of material deformation.","PeriodicalId":515987,"journal":{"name":"Materials Research Proceedings","volume":"6 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644903131-132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. This study proposes a new method for the inverse estimation of the parameters included in material models from full-field measurement data that are obtained using the digital image correlation method. This approach is based on data assimilation according to the Bayes’ theorem (Bayesian data assimilation). In this study, we demonstrate the assimilation of experimental data obtained from uniaxial tensile, forming, and fracture tests of aluminum alloys into elastoplastic finite element and phase-field crack propagation simulations. The proposed method allows the simultaneous estimation of multiple material model parameters. The Bayesian data assimilation is a promising methodology for estimating the parameters of different material models and constructing digital twins of material deformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用贝叶斯数据同化反向估算材料模型参数
摘要本研究提出了一种新方法,用于从使用数字图像相关法获得的全场测量数据中反向估算材料模型中的参数。该方法基于贝叶斯定理(贝叶斯数据同化)进行数据同化。在本研究中,我们展示了如何将铝合金单轴拉伸、成形和断裂试验获得的实验数据同化到弹性有限元和相场裂纹扩展模拟中。所提出的方法可同时估算多个材料模型参数。贝叶斯数据同化是估算不同材料模型参数和构建材料变形数字孪生模型的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Optimization of the heating parameters of a robotized hot incremental forming of high impact polystyrene Monitoring of the friction stir welding process: A preliminary study A robust identification protocol of flow curve adjusting parameters using uniaxial tensile curve Realization of functionally graded components with an optimized hybrid additive laminated tooling method Local reinforcement of titanium sheet by means of GTAW droplet deposition for threaded connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1