Machinability of PLA obtained by injection molding under a dry milling process

Liam Cloëz
{"title":"Machinability of PLA obtained by injection molding under a dry milling process","authors":"Liam Cloëz","doi":"10.21741/9781644903131-208","DOIUrl":null,"url":null,"abstract":"Abstract. This paper is part of a study focusing on the elaboration of accurate component with complex geometries using bio-sourced as an alternative to petrochemical polymer. The bio-sourced and biodegradable in this study is composed of a Poly Lactic Acid (PLA) matrix and hemp fibers. The final component is obtained by injection followed by a machining operation. the final component is obtained by injection followed by a machining finishing operation. Injection molding will be carried out to be compared with 3D printing on economic, environmental, production and workpiece quality criteria. This paper focuses only on the combination of two processes, injection molding followed by machining on poly (L-lactic acid) or PLLA which is biobased and biodegradable. After injecting the workpiece, thermo-physical characterization tests are realized on PLLA polymer. Rheology, thermal and mechanical tests are carried out in order to study thermomechanical behavior and to understand material flow phenomena at different temperatures and shear rates. The objective of this paper is to overcome the technical challenges of milling this material without any lubricant. In an upcoming project, various machining operations will be carried out such as turning to study continuous cutting, or milling to study discontinuous cutting on workpieces reinforced with bio-sourced fibers as hemp.","PeriodicalId":515987,"journal":{"name":"Materials Research Proceedings","volume":"72 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644903131-208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. This paper is part of a study focusing on the elaboration of accurate component with complex geometries using bio-sourced as an alternative to petrochemical polymer. The bio-sourced and biodegradable in this study is composed of a Poly Lactic Acid (PLA) matrix and hemp fibers. The final component is obtained by injection followed by a machining operation. the final component is obtained by injection followed by a machining finishing operation. Injection molding will be carried out to be compared with 3D printing on economic, environmental, production and workpiece quality criteria. This paper focuses only on the combination of two processes, injection molding followed by machining on poly (L-lactic acid) or PLLA which is biobased and biodegradable. After injecting the workpiece, thermo-physical characterization tests are realized on PLLA polymer. Rheology, thermal and mechanical tests are carried out in order to study thermomechanical behavior and to understand material flow phenomena at different temperatures and shear rates. The objective of this paper is to overcome the technical challenges of milling this material without any lubricant. In an upcoming project, various machining operations will be carried out such as turning to study continuous cutting, or milling to study discontinuous cutting on workpieces reinforced with bio-sourced fibers as hemp.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干磨工艺下注塑成型聚乳酸的可加工性
摘要本文是一项研究的一部分,研究重点是利用生物源替代石化聚合物,制作具有复杂几何形状的精确部件。本研究中的生物来源和生物可降解材料由聚乳酸(PLA)基体和麻纤维组成。最终部件通过注塑成型,然后进行机加工。注塑成型将与三维打印在经济、环境、生产和工件质量标准方面进行比较。本文仅关注两种工艺的结合,即在聚乳酸(PLLA)(生物基可生物降解材料)上先注塑再加工。注入工件后,对聚乳酸聚合物进行热物理特性测试。进行流变、热和机械测试的目的是研究热机械行为,并了解材料在不同温度和剪切速率下的流动现象。本文的目的是克服在不使用任何润滑剂的情况下铣削这种材料的技术难题。在即将开展的一个项目中,将进行各种加工操作,如车削以研究连续切削,或铣削以研究用生物源纤维(如大麻)增强的工件上的非连续切削。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Optimization of the heating parameters of a robotized hot incremental forming of high impact polystyrene Monitoring of the friction stir welding process: A preliminary study A robust identification protocol of flow curve adjusting parameters using uniaxial tensile curve Realization of functionally graded components with an optimized hybrid additive laminated tooling method Local reinforcement of titanium sheet by means of GTAW droplet deposition for threaded connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1