Unravelling the Tip Effect of Oxygen Catalysis in Integrated Cathode for High-Performance Flexible/Wearable Zn–Air Batteries

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2024-05-15 DOI:10.1007/s42765-024-00425-5
Yirun Shen, Haoning Mao, Chen Li, Keer Li, Yi Liu, Jihai Liao, Shengsen Zhang, Yueping Fang, Xin Cai
{"title":"Unravelling the Tip Effect of Oxygen Catalysis in Integrated Cathode for High-Performance Flexible/Wearable Zn–Air Batteries","authors":"Yirun Shen,&nbsp;Haoning Mao,&nbsp;Chen Li,&nbsp;Keer Li,&nbsp;Yi Liu,&nbsp;Jihai Liao,&nbsp;Shengsen Zhang,&nbsp;Yueping Fang,&nbsp;Xin Cai","doi":"10.1007/s42765-024-00425-5","DOIUrl":null,"url":null,"abstract":"<div><p>The exploration of high-efficiency transition metal–nitrogen–carbon (M–N–C) catalysts is crucial for accelerating the kinetics of oxygen reduction/oxygen evolution reactions (ORR/OER). Fine-tuning the distribution of accessible metal sites and the correlated triphase interfaces within the M–N–C catalysts holds significant promise. In this study, we present an integrated electrocatalyst comprised of tip-enriched NiFe nanoalloys encapsulated within N-doped carbon nanotubes (NiFe@CNTs), synthesized using an <i>in-situ</i> wet-electrochemistry mediated approach. The well-defined NiFe@CNTs catalyst possesses a porous heterostructure, synergistic M–N<sub>x</sub>–C active sites, and intimate micro interfaces, facilitating accelerated redox kinetics. This leads to exceptional OER/ORR activities with a low overall Δ<i>E</i> of 630 mV. Experimental results and density functional theory calculations unveil the predominant electronic interplay between the apical bimetallic sites and neighboring N-doped CNTs, thereby enhancing the binding of intermediates on NiFe@CNTs. Molecular dynamics simulations reveal that the local gas–liquid environment surrounding NiFe@CNTs favors the diffusion/adsorption of the OH<sup>−</sup>/O<sub>2</sub> reactants. Consequently, NiFe@CNTs contribute to high-performance aqueous Zn–Air batteries (ZABs), exhibiting a high gravimetric energy density (936 Wh kg<sub>Zn</sub><sup>–1</sup>) and superb cycling stability (&gt; 425 h) at 20 mA cm<sup>–2</sup>. Furthermore, solid-state ZABs based on NiFe@CNTs demonstrate impressive electrochemical performance (e.g., peak power density of 108 mW cm<sup>−2</sup>, specific energy of 1003 Wh kg<sub>Zn</sub><sup>–1</sup>) and prominent flexibility. This work illuminates a viable strategy for constructing metal site-specific, cobalt-free, and integrated M–N–C electrocatalysts for multifunctional catalysis and advanced/flexible energy storage applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1470 - 1482"},"PeriodicalIF":17.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00425-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of high-efficiency transition metal–nitrogen–carbon (M–N–C) catalysts is crucial for accelerating the kinetics of oxygen reduction/oxygen evolution reactions (ORR/OER). Fine-tuning the distribution of accessible metal sites and the correlated triphase interfaces within the M–N–C catalysts holds significant promise. In this study, we present an integrated electrocatalyst comprised of tip-enriched NiFe nanoalloys encapsulated within N-doped carbon nanotubes (NiFe@CNTs), synthesized using an in-situ wet-electrochemistry mediated approach. The well-defined NiFe@CNTs catalyst possesses a porous heterostructure, synergistic M–Nx–C active sites, and intimate micro interfaces, facilitating accelerated redox kinetics. This leads to exceptional OER/ORR activities with a low overall ΔE of 630 mV. Experimental results and density functional theory calculations unveil the predominant electronic interplay between the apical bimetallic sites and neighboring N-doped CNTs, thereby enhancing the binding of intermediates on NiFe@CNTs. Molecular dynamics simulations reveal that the local gas–liquid environment surrounding NiFe@CNTs favors the diffusion/adsorption of the OH/O2 reactants. Consequently, NiFe@CNTs contribute to high-performance aqueous Zn–Air batteries (ZABs), exhibiting a high gravimetric energy density (936 Wh kgZn–1) and superb cycling stability (> 425 h) at 20 mA cm–2. Furthermore, solid-state ZABs based on NiFe@CNTs demonstrate impressive electrochemical performance (e.g., peak power density of 108 mW cm−2, specific energy of 1003 Wh kgZn–1) and prominent flexibility. This work illuminates a viable strategy for constructing metal site-specific, cobalt-free, and integrated M–N–C electrocatalysts for multifunctional catalysis and advanced/flexible energy storage applications.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示高性能柔性/耐磨锌-空气电池集成阴极中氧催化的尖端效应
探索高效过渡金属-氮-碳(M-N-C)催化剂对于加速氧还原/氧进化反应(ORR/OER)的动力学至关重要。微调 M-N-C 催化剂中可访问金属位点的分布和相关的三相界面具有重大意义。在本研究中,我们介绍了一种集成电催化剂,它由封装在掺杂 N 的碳纳米管(NiFe@CNTs)中的尖端富集 NiFe 纳米合金组成,采用原位湿电化学介导法合成。定义明确的 NiFe@CNTs 催化剂具有多孔异质结构、协同的 M-Nx-C 活性位点和亲密的微界面,从而促进了氧化还原动力学的加速发展。这使得该催化剂具有卓越的 OER/ORR 活性和 630 mV 的低总 ΔE。实验结果和密度泛函理论计算揭示了顶端双金属位点与邻近掺杂 N 的 CNT 之间的主要电子相互作用,从而增强了 NiFe@CNT 上中间产物的结合。分子动力学模拟显示,NiFe@CNT 周围的局部气液环境有利于 OH-/O2 反应物的扩散/吸附。因此,NiFe@CNT 为高性能水性锌-空气电池(ZABs)做出了贡献,在 20 mA cm-2 的条件下表现出较高的重力能量密度(936 Wh kgZn-1)和超强的循环稳定性(425 h)。此外,基于 NiFe@CNTs 的固态 ZAB 还表现出令人印象深刻的电化学性能(例如,峰值功率密度为 108 mW cm-2,比能量为 1003 Wh kgZn-1)和突出的灵活性。这项工作为构建金属位点特异性、无钴和集成的 M-N-C 电催化剂提供了一种可行的策略,可用于多功能催化和先进/柔性储能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors ACAn Energy-Autonomous Wearable Fabric Powered by High-Power Density Sweat-Activated Batteries for Health Monitoring Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy Fiber Science at Xinjiang University: A Special Issue Dedicated to Centennial Celebration of Xinjiang University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1