R. Kavitha, Jayashree Natesan, K. M. Archana, Revathy Rajagopal
{"title":"Photocatalytic degradation of malachite green over differently synthesized nano-α-Fe2O3: a comprehensive pathway","authors":"R. Kavitha, Jayashree Natesan, K. M. Archana, Revathy Rajagopal","doi":"10.1007/s13204-024-03053-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nano-sized amorphous Iron (III) oxides have been a fascinating material for the scientific community owing to their widespread promising application in photocatalysis of water decontamination, due to high specific surface area and variable valency. Malachite green dye is a non-biodegradable organic pollutant known for its toxic effects on humans and aquatic organisms. In the present work, Fe<sub>2</sub>O<sub>3</sub> was synthesized through Citrate–Nitrate Sol–Gel route and Syzygium cumini leaf extract mediated green method. The composition and physical nature of the synthesized iron oxides were confirmed using p-XRD, SEM-EDAX, XPS techniques. A comparative investigation of visible light degradation of malachite green dye was done using differently synthesized Fe<sub>2</sub>O<sub>3</sub> at pH 8. The LCMS study exposed that the sol–gel Fe<sub>2</sub>O<sub>3</sub> was highly efficient in transforming Malachite green (MG) into a no. of intermediates of low molecular weights, whereas green Fe<sub>2</sub>O<sub>3</sub> revealed formation of both high and low molecular weight metabolites. In the light of the evidence derived from LCMS, a pathway has been proposed to highlight the absolute and sequential transformation of the dye to environmentally benign compounds. The study also disclosed the key role played by Iron oxide nanoparticles (IONPs), in the total mineralization of the dye to carbonates and nitrates that can be assimilated by plants and the decontaminated water can be engaged in agricultural practices.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 6","pages":"845 - 873"},"PeriodicalIF":3.6740,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03053-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Nano-sized amorphous Iron (III) oxides have been a fascinating material for the scientific community owing to their widespread promising application in photocatalysis of water decontamination, due to high specific surface area and variable valency. Malachite green dye is a non-biodegradable organic pollutant known for its toxic effects on humans and aquatic organisms. In the present work, Fe2O3 was synthesized through Citrate–Nitrate Sol–Gel route and Syzygium cumini leaf extract mediated green method. The composition and physical nature of the synthesized iron oxides were confirmed using p-XRD, SEM-EDAX, XPS techniques. A comparative investigation of visible light degradation of malachite green dye was done using differently synthesized Fe2O3 at pH 8. The LCMS study exposed that the sol–gel Fe2O3 was highly efficient in transforming Malachite green (MG) into a no. of intermediates of low molecular weights, whereas green Fe2O3 revealed formation of both high and low molecular weight metabolites. In the light of the evidence derived from LCMS, a pathway has been proposed to highlight the absolute and sequential transformation of the dye to environmentally benign compounds. The study also disclosed the key role played by Iron oxide nanoparticles (IONPs), in the total mineralization of the dye to carbonates and nitrates that can be assimilated by plants and the decontaminated water can be engaged in agricultural practices.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.