How much can personality predict prosocial behavior?

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-15 DOI:10.1177/08902070241251516
Yngwie Asbjørn Nielsen, Stefan Pfattheicher, Isabel Thielmann
{"title":"How much can personality predict prosocial behavior?","authors":"Yngwie Asbjørn Nielsen, Stefan Pfattheicher, Isabel Thielmann","doi":"10.1177/08902070241251516","DOIUrl":null,"url":null,"abstract":"Explaining prosocial behavior is a central goal in classic and contemporary behavioral science. Here, for the first time, we apply modern machine learning techniques to uncover the full predictive potential that personality traits have for prosocial behavior. We utilize a large-scale dataset ( N = 2707; 81 personality traits) and state-of-the-art statistical models to predict an incentivized measure of prosocial behavior, Social Value Orientation (SVO). We conclude: (1) traits explain 13.9% of the variance in SVO; (2) linear models are sufficient to obtain good prediction; (3) trait–trait interactions do not improve prediction; (4) narrow traits improve prediction beyond basic personality (i.e., the HEXACO); (5) there is a moderate association between the univariate predictive power of a trait and its multivariate predictive power, suggesting that univariate estimates (e.g., Pearson’s correlation) can serve as a useful proxy for multivariate variable importance. We propose that the limited usefulness of nonlinear models may stem from current measurement practices in personality science, which tend to favor linearly related constructs. Overall, our study provides a benchmark for how well personality predicts SVO and charts a course toward better prediction of prosocial behavior.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"26 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/08902070241251516","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Explaining prosocial behavior is a central goal in classic and contemporary behavioral science. Here, for the first time, we apply modern machine learning techniques to uncover the full predictive potential that personality traits have for prosocial behavior. We utilize a large-scale dataset ( N = 2707; 81 personality traits) and state-of-the-art statistical models to predict an incentivized measure of prosocial behavior, Social Value Orientation (SVO). We conclude: (1) traits explain 13.9% of the variance in SVO; (2) linear models are sufficient to obtain good prediction; (3) trait–trait interactions do not improve prediction; (4) narrow traits improve prediction beyond basic personality (i.e., the HEXACO); (5) there is a moderate association between the univariate predictive power of a trait and its multivariate predictive power, suggesting that univariate estimates (e.g., Pearson’s correlation) can serve as a useful proxy for multivariate variable importance. We propose that the limited usefulness of nonlinear models may stem from current measurement practices in personality science, which tend to favor linearly related constructs. Overall, our study provides a benchmark for how well personality predicts SVO and charts a course toward better prediction of prosocial behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人格在多大程度上能预测亲社会行为?
解释亲社会行为是经典和当代行为科学的核心目标。在这里,我们首次应用现代机器学习技术来揭示人格特质对亲社会行为的全部预测潜力。我们利用大规模数据集(N = 2707;81 种人格特质)和最先进的统计模型来预测亲社会行为的激励措施--社会价值取向(SVO)。我们得出以下结论(1) 特质解释了 SVO 中 13.9% 的变异;(2) 线性模型足以获得良好的预测效果;(3) 特质与特质之间的交互作用不会提高预测效果;(4) 狭义特质提高了基本人格(即 HEXACO)之外的预测效果;(5) 特质与特质之间的交互作用不会提高预测效果;(6) 特质与特质之间的交互作用不会提高预测效果、(5)特质的单变量预测能力与其多变量预测能力之间存在适度关联,这表明单变量估计值(如皮尔逊相关性)可以作为多变量重要性的有用替代。我们认为,非线性模型的有限实用性可能源于当前人格科学的测量实践,即倾向于线性相关的建构。总之,我们的研究为人格如何预测 SVO 提供了一个基准,并为更好地预测亲社会行为指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Editorial Masthead Issue Publication Information A Pseudocapacitive Nanohybrid of Nd-Doped CuGd2O4@Carbon Black as an Efficient Electrode Material for Supercapacitors Enhanced Energy Storage Performance in BNKT-Based Lead-Free Thin Films at Low Electric Fields Synergistic Reinforcement of Dual-Cross-Linked Starch Hydrogels with ZIF-8 and STMP for Enhanced Stability and Electrochemical Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1