Analysis of thermomechanical coupled accelerated aging of HTPB propellants

Yi Zeng, Wei Huang, Jia‐Xing Chen, Jin-sheng Xu, Xiong Chen, Rui Wu, Qi‐Xuan Song
{"title":"Analysis of thermomechanical coupled accelerated aging of HTPB propellants","authors":"Yi Zeng, Wei Huang, Jia‐Xing Chen, Jin-sheng Xu, Xiong Chen, Rui Wu, Qi‐Xuan Song","doi":"10.1002/prep.202300311","DOIUrl":null,"url":null,"abstract":"This study employed macroscopic uniaxial compression tests at low and medium strain rates, coupled with microscopic electron microscopy, to extensively analyse the impact of thermomechanical coupled aging on the accelerated aging of Hydroxyl‐terminated Polybutadiene (HTPB) propellants, contrasting it with the effects of isolated factors such as heat and dynamic reciprocating force. Results indicate that at various environmental temperatures (323 K, 343 K, and 363 K), thermomechanical coupled aging more significantly affects HTPB propellants than isolated factors. This effect is macroscopically evident in increased ease of deformation, permanent deformation during aging, continual increase in dissipated energy, and a decrease in average stress and ultimate strain post‐aging. Microscopically, the effect predominantly arises from the interplay between matrix thermal degradation and particle fragmentation, which rapidly accumulate and substantially impact the material's macroscopic mechanical properties. Furthermore, as the aging temperature rises, the alterations in both macroscopic mechanical properties and microscopic morphology of HTPB propellants become more pronounced. However, overly high temperatures may swiftly result in substantial material performance deterioration. Consequently, while elevating temperature effectively accelerates thermomechanical aging, the potential adverse effects on material performance must be judiciously considered. This underscores the necessity of balancing temperature regulation with aging efficiency enhancement in HTPB propellants to ensure effective control and quantitative assessment of the aging process, while minimizing material degradation.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"62 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/prep.202300311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employed macroscopic uniaxial compression tests at low and medium strain rates, coupled with microscopic electron microscopy, to extensively analyse the impact of thermomechanical coupled aging on the accelerated aging of Hydroxyl‐terminated Polybutadiene (HTPB) propellants, contrasting it with the effects of isolated factors such as heat and dynamic reciprocating force. Results indicate that at various environmental temperatures (323 K, 343 K, and 363 K), thermomechanical coupled aging more significantly affects HTPB propellants than isolated factors. This effect is macroscopically evident in increased ease of deformation, permanent deformation during aging, continual increase in dissipated energy, and a decrease in average stress and ultimate strain post‐aging. Microscopically, the effect predominantly arises from the interplay between matrix thermal degradation and particle fragmentation, which rapidly accumulate and substantially impact the material's macroscopic mechanical properties. Furthermore, as the aging temperature rises, the alterations in both macroscopic mechanical properties and microscopic morphology of HTPB propellants become more pronounced. However, overly high temperatures may swiftly result in substantial material performance deterioration. Consequently, while elevating temperature effectively accelerates thermomechanical aging, the potential adverse effects on material performance must be judiciously considered. This underscores the necessity of balancing temperature regulation with aging efficiency enhancement in HTPB propellants to ensure effective control and quantitative assessment of the aging process, while minimizing material degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HTPB 推进剂的热机械耦合加速老化分析
本研究采用低应变率和中应变率的宏观单轴压缩试验,结合微观电子显微镜,广泛分析了热机械耦合老化对羟基封端聚丁二烯(HTPB)推进剂加速老化的影响,并与热量和动态往复力等孤立因素的影响进行了对比。结果表明,在不同的环境温度下(323 K、343 K 和 363 K),热机械耦合老化对 HTPB 推进剂的影响比孤立因素的影响更为显著。从宏观上看,这种影响表现为老化过程中更容易变形、永久变形、耗散能量持续增加以及老化后平均应力和极限应变降低。从微观上看,这种效应主要源于基体热降解和颗粒破碎之间的相互作用,它们迅速累积并对材料的宏观机械性能产生重大影响。此外,随着老化温度的升高,HTPB 推进剂的宏观机械性能和微观形态的变化会变得更加明显。然而,过高的温度可能会迅速导致材料性能大幅下降。因此,虽然提高温度可以有效加速热机械老化,但必须审慎考虑其对材料性能的潜在不利影响。这强调了在 HTPB 推进剂中平衡温度调节和提高老化效率的必要性,以确保有效控制和定量评估老化过程,同时最大限度地减少材料降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents: Prop., Explos., Pyrotech. 7/2024 Future Articles: Prop., Explos., Pyrotech. 8/2024 Examining the impact of nano‐sized Litharge, Tenorite, and Hematite on the thermal decomposition of ammonium perchlorate‐based cross‐linked composite modified double base propellant Eco‐friendly chemically crosslinked solid composite propellants via catalyst‐free azide‐alkyne cycloaddition A comprehensive study on the thermal properties and chemical characterization of 1,3,5‐trinitroso‐1,3,5‐triazine (R‐Salt)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1