首页 > 最新文献

Propellants, Explosives, Pyrotechnics最新文献

英文 中文
Contents: Prop., Explos., Pyrotech. 7/2024 内容:Prop.7/2024
Pub Date : 2024-07-01 DOI: 10.1002/prep.202480711
{"title":"Contents: Prop., Explos., Pyrotech. 7/2024","authors":"","doi":"10.1002/prep.202480711","DOIUrl":"https://doi.org/10.1002/prep.202480711","url":null,"abstract":"","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"66 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future Articles: Prop., Explos., Pyrotech. 8/2024 未来文章:Prop.8/2024
Pub Date : 2024-07-01 DOI: 10.1002/prep.202480799
{"title":"Future Articles: Prop., Explos., Pyrotech. 8/2024","authors":"","doi":"10.1002/prep.202480799","DOIUrl":"https://doi.org/10.1002/prep.202480799","url":null,"abstract":"","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"21 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141712903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco‐friendly chemically crosslinked solid composite propellants via catalyst‐free azide‐alkyne cycloaddition 通过无催化剂叠氮-炔烃环加成法制备生态友好型化学交联固体复合推进剂
Pub Date : 2024-06-04 DOI: 10.1002/prep.202400016
B. Min, Sung June Kim, Hong Min Shim, Heung Bae Jeon
We have innovatively formulated solid propellants by employing a catalyst‐free azide‐alkyne cycloaddition approach, steering away from the conventional urethane curing system reliant on moisture‐sensitive isocyanate compounds. These conventional systems exhibits poor compatibility with the eco‐friendly ionic oxidizers. Azide polymers, including polycaprolactone ether (PCE), polycaprolactone (PCL), and polyethylene glycol (PEG) were incorporated, with their terminal hydroxyl groups strategically modified with azides. Additionally, glycidyl azide polymer (GAP), characterized by an abundance of azides in its side chains, was introduced. For polybutadiene‐based solid propellants, a departure from the norm was pursued. We employed polybutadiene (PB) terminated with electron‐deficient alkynes(propiolate), synthesized through a urethane reaction involving an unsymmetric divalent chain‐linker containing both isocyanate and propiolate functionalities with hydroxyl‐terminated polybutadiene (HTPB). This approach diverged from the common practice of modifying other polymers with azides at the terminal. To ensure the attainment of optical mechanical properties in azide‐terminated polymer‐based solid propellants, trivalent propiolate curatives were judiciously combined with divalent propiolate curatives in an appropriate blend ratio. A meticulously synthesized series of polymeric bonding agents, designed to establish chemical links between solid oxidizers and polymer binder, revealed the idenfication of exceptional bonding agents. These agents played a pivotal role in delivering outstanding mechanical properties in solid propellants based on ammonium perchlorate (AP) and nitramine‐typed oxidizers. GAP‐based solid propellants were meticulously prepared, incorporating both urethane moieties at the terminal and triazole moieties at the side chains. Trivalent azide‐terminal curatives were introduced for crosslinking PB terminated with propiolates. Generally, triazole‐curing system resulted in solid propellants exhibiting notably higher burning rates compared to those crosslinked through urethanes. In summary, this research presents a sophisticated approach to the formulation of solid propellants, emphasizing a departure from conventional systems, strategic polymer modifications, and the meticulous synthesis of bonding agents to achieve superior mechanical properties and burning rates.
我们采用无催化剂叠氮-炔烃环加成法创新配制了固体推进剂,摒弃了依赖对湿气敏感的异氰酸酯化合物的传统聚氨酯固化体系。这些传统体系与环保型离子氧化剂的兼容性很差。我们加入了叠氮聚合物,包括聚己内酯醚(PCE)、聚己内酯(PCL)和聚乙二醇(PEG),并用叠氮化物对它们的末端羟基进行了战略改性。此外,还引入了缩水甘油叠氮聚合物(GAP),其特点是侧链中含有大量叠氮化物。对于以聚丁二烯为基础的固体推进剂,我们采用了不同于常规的方法。我们采用了以缺电子炔(丙炔酸盐)为末端的聚丁二烯(PB),这种聚丁二烯是通过不对称二价链连接剂与羟基末端聚丁二烯(HTPB)的氨基甲酸酯反应合成的,该连接剂同时含有异氰酸酯和丙炔酸盐官能团。这种方法有别于在末端使用叠氮化物改性其他聚合物的常见做法。为确保叠氮封端的聚合物基固体推进剂具有光学机械性能,三价丙炔酸酯固化剂与二价丙炔酸酯固化剂以适当的混合比例进行了明智的组合。为了在固体氧化剂和聚合物粘合剂之间建立化学联系,我们精心合成了一系列聚合物粘合剂,发现了一些特殊的粘合剂。这些粘接剂在基于高氯酸铵(AP)和硝胺类氧化剂的固体推进剂中提供出色的机械性能方面发挥了关键作用。我们精心制备了基于 GAP 的固体推进剂,在末端加入了聚氨酯分子,在侧链上加入了三唑分子。引入了三价叠氮末端固化剂,用于交联以丙二醇酯为末端的 PB。一般来说,三唑固化体系产生的固体推进剂与通过聚氨酯交联的推进剂相比,燃烧速率明显更高。总之,这项研究提出了一种复杂的固体推进剂配方方法,强调偏离传统体系,对聚合物进行战略性改性,并精心合成粘合剂,以获得优异的机械性能和燃烧率。
{"title":"Eco‐friendly chemically crosslinked solid composite propellants via catalyst‐free azide‐alkyne cycloaddition","authors":"B. Min, Sung June Kim, Hong Min Shim, Heung Bae Jeon","doi":"10.1002/prep.202400016","DOIUrl":"https://doi.org/10.1002/prep.202400016","url":null,"abstract":"We have innovatively formulated solid propellants by employing a catalyst‐free azide‐alkyne cycloaddition approach, steering away from the conventional urethane curing system reliant on moisture‐sensitive isocyanate compounds. These conventional systems exhibits poor compatibility with the eco‐friendly ionic oxidizers. Azide polymers, including polycaprolactone ether (PCE), polycaprolactone (PCL), and polyethylene glycol (PEG) were incorporated, with their terminal hydroxyl groups strategically modified with azides. Additionally, glycidyl azide polymer (GAP), characterized by an abundance of azides in its side chains, was introduced. For polybutadiene‐based solid propellants, a departure from the norm was pursued. We employed polybutadiene (PB) terminated with electron‐deficient alkynes(propiolate), synthesized through a urethane reaction involving an unsymmetric divalent chain‐linker containing both isocyanate and propiolate functionalities with hydroxyl‐terminated polybutadiene (HTPB). This approach diverged from the common practice of modifying other polymers with azides at the terminal. To ensure the attainment of optical mechanical properties in azide‐terminated polymer‐based solid propellants, trivalent propiolate curatives were judiciously combined with divalent propiolate curatives in an appropriate blend ratio. A meticulously synthesized series of polymeric bonding agents, designed to establish chemical links between solid oxidizers and polymer binder, revealed the idenfication of exceptional bonding agents. These agents played a pivotal role in delivering outstanding mechanical properties in solid propellants based on ammonium perchlorate (AP) and nitramine‐typed oxidizers. GAP‐based solid propellants were meticulously prepared, incorporating both urethane moieties at the terminal and triazole moieties at the side chains. Trivalent azide‐terminal curatives were introduced for crosslinking PB terminated with propiolates. Generally, triazole‐curing system resulted in solid propellants exhibiting notably higher burning rates compared to those crosslinked through urethanes. In summary, this research presents a sophisticated approach to the formulation of solid propellants, emphasizing a departure from conventional systems, strategic polymer modifications, and the meticulous synthesis of bonding agents to achieve superior mechanical properties and burning rates.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining the impact of nano‐sized Litharge, Tenorite, and Hematite on the thermal decomposition of ammonium perchlorate‐based cross‐linked composite modified double base propellant 研究纳米级石墨、钛铁矿和赤铁矿对高氯酸铵基交联复合改性双基推进剂热分解的影响
Pub Date : 2024-06-04 DOI: 10.1002/prep.202300308
Meriem Amina Fertassi, S. Belkhiri, Sabri Touidjine, M. K. Boulkadid, Akbi Hamdane, K. Khimeche
This study aims to compare the catalytic effects of three nano‐metal oxides (nMOs); Litharge (α‐PbO), Tenorite (CuO), and Hematite (α‐Fe2O3) on the thermal decomposition of an ammonium perchlorate based cross‐linked composite modified double base propellant (AP‐XLCMDBP). The three nMOs are synthesized via a chemical precipitation method and then characterized using XRD, FTIR, and SEM. Their effect on the thermal decomposition of AP‐XLCMDBP is studied using thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). The results indicate that Litharge has no significant effect on the thermal decomposition of AP‐XLCMDBP. However, both Tenorite and Hematite nanocatalysts accelerate the thermolysis process and enhance the total heat released from AP‐XLCMDBP. Moreover, compared to Tenorite, Hematite nanoparticles are found to be a more efficient catalyst, where their presence in AP‐XLCMDBP leads to a significant decrease in activation energies of the first and the second decomposition stages by 13.67 kJ/mol and 17.57 kJ/mol, respectively. An increase of the total decomposition heat by 153.73 J/g is also attained in the presence of Hematite, displaying its high catalytic action on the thermal decomposition of AP‐XLCMDBP.
本研究旨在比较三种纳米金属氧化物(nMOs):石墨(α-PbO)、钛铁矿(CuO)和赤铁矿(α-Fe2O3)对高氯酸铵基交联复合改性双基推进剂(AP-XLCMDBP)热分解的催化作用。这三种 nMO 通过化学沉淀法合成,然后使用 XRD、FTIR 和 SEM 进行表征。使用热重分析(TGA)和差示扫描量热仪(DSC)研究了它们对 AP-XLCMDBP 热分解的影响。结果表明,Litharge 对 AP-XLCMDBP 的热分解没有明显影响。然而,钛铁矿和赤铁矿纳米催化剂都能加速热分解过程,提高 AP-XLCMDBP 释放的总热量。此外,与透辉石相比,赤铁矿纳米颗粒是一种更高效的催化剂,它们在 AP-XLCMDBP 中的存在使第一和第二分解阶段的活化能分别显著降低了 13.67 kJ/mol 和 17.57 kJ/mol。赤铁矿的存在还使总分解热增加了 153.73 焦耳/克,这表明赤铁矿对 AP-XLCMDBP 的热分解具有很强的催化作用。
{"title":"Examining the impact of nano‐sized Litharge, Tenorite, and Hematite on the thermal decomposition of ammonium perchlorate‐based cross‐linked composite modified double base propellant","authors":"Meriem Amina Fertassi, S. Belkhiri, Sabri Touidjine, M. K. Boulkadid, Akbi Hamdane, K. Khimeche","doi":"10.1002/prep.202300308","DOIUrl":"https://doi.org/10.1002/prep.202300308","url":null,"abstract":"This study aims to compare the catalytic effects of three nano‐metal oxides (nMOs); Litharge (α‐PbO), Tenorite (CuO), and Hematite (α‐Fe2O3) on the thermal decomposition of an ammonium perchlorate based cross‐linked composite modified double base propellant (AP‐XLCMDBP). The three nMOs are synthesized via a chemical precipitation method and then characterized using XRD, FTIR, and SEM. Their effect on the thermal decomposition of AP‐XLCMDBP is studied using thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). The results indicate that Litharge has no significant effect on the thermal decomposition of AP‐XLCMDBP. However, both Tenorite and Hematite nanocatalysts accelerate the thermolysis process and enhance the total heat released from AP‐XLCMDBP. Moreover, compared to Tenorite, Hematite nanoparticles are found to be a more efficient catalyst, where their presence in AP‐XLCMDBP leads to a significant decrease in activation energies of the first and the second decomposition stages by 13.67 kJ/mol and 17.57 kJ/mol, respectively. An increase of the total decomposition heat by 153.73 J/g is also attained in the presence of Hematite, displaying its high catalytic action on the thermal decomposition of AP‐XLCMDBP.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"27 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the influence of additives on the ignition, combustion and quenching of electrically controlled solid propellants 探索添加剂对电控固体推进剂点火、燃烧和熄灭的影响
Pub Date : 2024-05-15 DOI: 10.1002/prep.202300299
Sean Whalen, Emily Sellards, Bradley Gobin, Gregory Young
The influence of additives on the decomposition and combustion characteristics of electrically controlled solid propellants was investigated through small scale experiments. Carbon black and aluminum additives were explored in a polyethylene oxide, lithium perchlorate propellant. Additives were used to improve the voltage response and their impact on ignition and combustion was characterized. The data showed that conductive additives can mitigate the loss of solid phase conductivity through solvent evaporation and that ignition delay decreases with higher voltage and solid phase conductivity. Steady‐state combustion experiments showed that electrical decomposition of the propellants proceeded more rapidly than a purely thermal stimulus illustrating the importance of electrochemistry in ECSP combustion. The combined effects of pressure and voltage on combustion rates were summarized in Saint‐Robert's burn relations. The regression rates increased with both applied voltage and pressure. The pressure deflagration limit of propellants with the carbon black additive was significantly reduced compared to a neat PEO/LP propellant, whereas the addition of 10 % aluminum did not affect the pressure deflagration limit.
通过小规模实验研究了添加剂对电控固体推进剂分解和燃烧特性的影响。在聚氧化乙烯和高氯酸锂推进剂中研究了炭黑和铝添加剂。添加剂用于改善电压响应,并表征了它们对点火和燃烧的影响。数据显示,导电添加剂可以减轻溶剂蒸发造成的固相电导率损失,而且点火延迟会随着电压和固相电导率的提高而减小。稳态燃烧实验表明,推进剂的电分解比纯热刺激进行得更快,这说明了电化学在 ECSP 燃烧中的重要性。圣罗伯特燃烧关系总结了压力和电压对燃烧速率的综合影响。回归率随施加的电压和压力而增加。与纯 PEO/LP 推进剂相比,添加了炭黑添加剂的推进剂的压力爆燃极限明显降低,而添加 10% 的铝不会影响压力爆燃极限。
{"title":"Exploring the influence of additives on the ignition, combustion and quenching of electrically controlled solid propellants","authors":"Sean Whalen, Emily Sellards, Bradley Gobin, Gregory Young","doi":"10.1002/prep.202300299","DOIUrl":"https://doi.org/10.1002/prep.202300299","url":null,"abstract":"The influence of additives on the decomposition and combustion characteristics of electrically controlled solid propellants was investigated through small scale experiments. Carbon black and aluminum additives were explored in a polyethylene oxide, lithium perchlorate propellant. Additives were used to improve the voltage response and their impact on ignition and combustion was characterized. The data showed that conductive additives can mitigate the loss of solid phase conductivity through solvent evaporation and that ignition delay decreases with higher voltage and solid phase conductivity. Steady‐state combustion experiments showed that electrical decomposition of the propellants proceeded more rapidly than a purely thermal stimulus illustrating the importance of electrochemistry in ECSP combustion. The combined effects of pressure and voltage on combustion rates were summarized in Saint‐Robert's burn relations. The regression rates increased with both applied voltage and pressure. The pressure deflagration limit of propellants with the carbon black additive was significantly reduced compared to a neat PEO/LP propellant, whereas the addition of 10 % aluminum did not affect the pressure deflagration limit.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"60 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive study on the thermal properties and chemical characterization of 1,3,5‐trinitroso‐1,3,5‐triazine (R‐Salt) 关于 1,3,5-三亚硝基-1,3,5-三嗪(R-盐)的热特性和化学特征的综合研究
Pub Date : 2024-05-15 DOI: 10.1002/prep.202400028
Benjamin P Wilkins, Hope T. Sartain, Sheana Schneidereit, Benjamin Ostrow, Joaquin Aparicio, Andrew Horan, Kevin Pedersen, Jeffrey Barber, Johnny Perez, Marc Richard, Elizabeth Pollock, John J Brady
1,3,5‐trinitroso‐1,3,5‐triazine (R‐Salt) is an insensitive energetic that has previously been used as an improvised explosive. The work presented here is a comprehensive study on the thermal properties and chemical characterization of R‐Salt. Thermal analysis was performed via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) which found both crude and recrystallized R‐Salt have similar thermal properties but the selected lid impacted both the thermal profile and onset temperature. Chemical characterization performed via Raman, Fourier‐transform Infrared (FT‐IR), nuclear magnetic resonance (NMR) spectroscopy and high‐resolution mass spectrometry indicate that recrystallization does not quantitatively improve the purity of crude R‐Salt., The reported NMR 2D‐HSQC, FT‐IR, and Raman spectra are the first to be reported within the published literature, as to the authors’ knowledge.
1,3,5-三亚硝基-1,3,5-三嗪(R-盐)是一种不敏感的高能物质,曾被用作简易爆炸物。本文介绍的工作是对 R 盐的热特性和化学特征进行全面研究。通过差示扫描量热法(DSC)和热重分析法(TGA)进行的热分析发现,粗制和重结晶的 R 盐具有相似的热特性,但所选的盖子会影响热曲线和起始温度。通过拉曼、傅立叶变换红外(FT-IR)、核磁共振(NMR)光谱和高分辨率质谱进行的化学特性分析表明,重结晶并不能定量地提高粗制 R 盐的纯度。
{"title":"A comprehensive study on the thermal properties and chemical characterization of 1,3,5‐trinitroso‐1,3,5‐triazine (R‐Salt)","authors":"Benjamin P Wilkins, Hope T. Sartain, Sheana Schneidereit, Benjamin Ostrow, Joaquin Aparicio, Andrew Horan, Kevin Pedersen, Jeffrey Barber, Johnny Perez, Marc Richard, Elizabeth Pollock, John J Brady","doi":"10.1002/prep.202400028","DOIUrl":"https://doi.org/10.1002/prep.202400028","url":null,"abstract":"1,3,5‐trinitroso‐1,3,5‐triazine (R‐Salt) is an insensitive energetic that has previously been used as an improvised explosive. The work presented here is a comprehensive study on the thermal properties and chemical characterization of R‐Salt. Thermal analysis was performed via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) which found both crude and recrystallized R‐Salt have similar thermal properties but the selected lid impacted both the thermal profile and onset temperature. Chemical characterization performed via Raman, Fourier‐transform Infrared (FT‐IR), nuclear magnetic resonance (NMR) spectroscopy and high‐resolution mass spectrometry indicate that recrystallization does not quantitatively improve the purity of crude R‐Salt., The reported NMR 2D‐HSQC, FT‐IR, and Raman spectra are the first to be reported within the published literature, as to the authors’ knowledge.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140973435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of thermomechanical coupled accelerated aging of HTPB propellants HTPB 推进剂的热机械耦合加速老化分析
Pub Date : 2024-05-15 DOI: 10.1002/prep.202300311
Yi Zeng, Wei Huang, Jia‐Xing Chen, Jin-sheng Xu, Xiong Chen, Rui Wu, Qi‐Xuan Song
This study employed macroscopic uniaxial compression tests at low and medium strain rates, coupled with microscopic electron microscopy, to extensively analyse the impact of thermomechanical coupled aging on the accelerated aging of Hydroxyl‐terminated Polybutadiene (HTPB) propellants, contrasting it with the effects of isolated factors such as heat and dynamic reciprocating force. Results indicate that at various environmental temperatures (323 K, 343 K, and 363 K), thermomechanical coupled aging more significantly affects HTPB propellants than isolated factors. This effect is macroscopically evident in increased ease of deformation, permanent deformation during aging, continual increase in dissipated energy, and a decrease in average stress and ultimate strain post‐aging. Microscopically, the effect predominantly arises from the interplay between matrix thermal degradation and particle fragmentation, which rapidly accumulate and substantially impact the material's macroscopic mechanical properties. Furthermore, as the aging temperature rises, the alterations in both macroscopic mechanical properties and microscopic morphology of HTPB propellants become more pronounced. However, overly high temperatures may swiftly result in substantial material performance deterioration. Consequently, while elevating temperature effectively accelerates thermomechanical aging, the potential adverse effects on material performance must be judiciously considered. This underscores the necessity of balancing temperature regulation with aging efficiency enhancement in HTPB propellants to ensure effective control and quantitative assessment of the aging process, while minimizing material degradation.
本研究采用低应变率和中应变率的宏观单轴压缩试验,结合微观电子显微镜,广泛分析了热机械耦合老化对羟基封端聚丁二烯(HTPB)推进剂加速老化的影响,并与热量和动态往复力等孤立因素的影响进行了对比。结果表明,在不同的环境温度下(323 K、343 K 和 363 K),热机械耦合老化对 HTPB 推进剂的影响比孤立因素的影响更为显著。从宏观上看,这种影响表现为老化过程中更容易变形、永久变形、耗散能量持续增加以及老化后平均应力和极限应变降低。从微观上看,这种效应主要源于基体热降解和颗粒破碎之间的相互作用,它们迅速累积并对材料的宏观机械性能产生重大影响。此外,随着老化温度的升高,HTPB 推进剂的宏观机械性能和微观形态的变化会变得更加明显。然而,过高的温度可能会迅速导致材料性能大幅下降。因此,虽然提高温度可以有效加速热机械老化,但必须审慎考虑其对材料性能的潜在不利影响。这强调了在 HTPB 推进剂中平衡温度调节和提高老化效率的必要性,以确保有效控制和定量评估老化过程,同时最大限度地减少材料降解。
{"title":"Analysis of thermomechanical coupled accelerated aging of HTPB propellants","authors":"Yi Zeng, Wei Huang, Jia‐Xing Chen, Jin-sheng Xu, Xiong Chen, Rui Wu, Qi‐Xuan Song","doi":"10.1002/prep.202300311","DOIUrl":"https://doi.org/10.1002/prep.202300311","url":null,"abstract":"This study employed macroscopic uniaxial compression tests at low and medium strain rates, coupled with microscopic electron microscopy, to extensively analyse the impact of thermomechanical coupled aging on the accelerated aging of Hydroxyl‐terminated Polybutadiene (HTPB) propellants, contrasting it with the effects of isolated factors such as heat and dynamic reciprocating force. Results indicate that at various environmental temperatures (323 K, 343 K, and 363 K), thermomechanical coupled aging more significantly affects HTPB propellants than isolated factors. This effect is macroscopically evident in increased ease of deformation, permanent deformation during aging, continual increase in dissipated energy, and a decrease in average stress and ultimate strain post‐aging. Microscopically, the effect predominantly arises from the interplay between matrix thermal degradation and particle fragmentation, which rapidly accumulate and substantially impact the material's macroscopic mechanical properties. Furthermore, as the aging temperature rises, the alterations in both macroscopic mechanical properties and microscopic morphology of HTPB propellants become more pronounced. However, overly high temperatures may swiftly result in substantial material performance deterioration. Consequently, while elevating temperature effectively accelerates thermomechanical aging, the potential adverse effects on material performance must be judiciously considered. This underscores the necessity of balancing temperature regulation with aging efficiency enhancement in HTPB propellants to ensure effective control and quantitative assessment of the aging process, while minimizing material degradation.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"62 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative detection of aging damage of solid propellant based on frequency impedance spectroscopy combined with CARS‐SVM algorithm 基于频率阻抗光谱与 CARS-SVM 算法相结合的固体推进剂老化损伤定量检测方法
Pub Date : 2024-05-15 DOI: 10.1002/prep.202300227
Leiguang Duan, Xueren Wang, Binbin Zhang, Hongfu Qiang
Solid propellant, as the energy source for solid rocket engines, it is of great significance to achieve accurate quantitative detection of aging damage of solid propellant. In this paper, a novel approach based on frequency impedance spectroscopy impedance combined with CARS‐SVM algorithm was proposed. First, the temperature, humidity, and pressure of environmental information around the solid rocket motor were sampled, and then the impedance at corresponding frequencies of the propellant was obtained by AD5933 chip. Second, the processed experimental data were subjected to abnormal sample detection before further variables selection using uninformative variables elimination (UVE) competitive adaptive reweighted sampling (CARS), respectively. Finally, support vector machine (SVM), UVE‐SVM and CARS‐SVM quantitative calibration methods were established. The results showed that the determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) of CARS‐SVM model were 0.9919, 0.7540, and 0.0480, respectively. Therefore, the results prove that impedance of solid propellant combined with CARS‐SVM model can effectively achieve high precision quantitative detection of aging damage of solid propellant, which lays a new method for the application of solid propellants aging damage in the online quantitative detection.
固体推进剂作为固体火箭发动机的能源,实现对固体推进剂老化损伤的精确定量检测具有重要意义。本文提出了一种基于频率阻抗谱阻抗结合 CARS-SVM 算法的新方法。首先,对固体火箭发动机周围的温度、湿度和压力等环境信息进行采样,然后通过 AD5933 芯片获得推进剂相应频率的阻抗。其次,对处理后的实验数据进行异常样本检测,然后分别使用无信息变量消除(UVE)竞争性自适应加权采样(CARS)进行进一步的变量选择。最后,建立了支持向量机(SVM)、UVE-SVM 和 CARS-SVM 定量校准方法。结果表明,CARS-SVM 模型的判定系数(R2)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)分别为 0.9919、0.7540 和 0.0480。因此,结果证明固体推进剂阻抗结合 CARS-SVM 模型可有效实现固体推进剂老化损伤的高精度定量检测,为固体推进剂老化损伤在线定量检测的应用奠定了新的方法基础。
{"title":"Quantitative detection of aging damage of solid propellant based on frequency impedance spectroscopy combined with CARS‐SVM algorithm","authors":"Leiguang Duan, Xueren Wang, Binbin Zhang, Hongfu Qiang","doi":"10.1002/prep.202300227","DOIUrl":"https://doi.org/10.1002/prep.202300227","url":null,"abstract":"Solid propellant, as the energy source for solid rocket engines, it is of great significance to achieve accurate quantitative detection of aging damage of solid propellant. In this paper, a novel approach based on frequency impedance spectroscopy impedance combined with CARS‐SVM algorithm was proposed. First, the temperature, humidity, and pressure of environmental information around the solid rocket motor were sampled, and then the impedance at corresponding frequencies of the propellant was obtained by AD5933 chip. Second, the processed experimental data were subjected to abnormal sample detection before further variables selection using uninformative variables elimination (UVE) competitive adaptive reweighted sampling (CARS), respectively. Finally, support vector machine (SVM), UVE‐SVM and CARS‐SVM quantitative calibration methods were established. The results showed that the determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) of CARS‐SVM model were 0.9919, 0.7540, and 0.0480, respectively. Therefore, the results prove that impedance of solid propellant combined with CARS‐SVM model can effectively achieve high precision quantitative detection of aging damage of solid propellant, which lays a new method for the application of solid propellants aging damage in the online quantitative detection.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"15 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence and comparison of cylindrical engineered defects on detonation waveshape in a rubberized RDX explosive 圆柱形工程缺陷对橡胶 RDX 炸药起爆波形的影响和比较
Pub Date : 2024-05-15 DOI: 10.1002/prep.202300292
Joseph R. Lawrence, Gabriel A. Montoya, Austin D. Koeblitz, Steven F. Son
Inhomogeneities within explosives affect the sensitivity and detonation waveshape of energetic materials. The influence of voids on explosive initiation has been well documented; however, the effects that voids between 0.1 mm and 10 mm have on a propagating detonation wave remains largely unexplored. The effect of single cylindrical voids on detonation waveshape and re‐initiation was examined here using manufactured voids in a rubberized 1,3,5‐trinitro‐1,3,5‐triazinane (RDX) explosive. Two streak imaging techniques were fielded to investigate void influence. For the first, back‐surface streak imaging, the location of the void on the samples was changed and the resulting change in detonation waveshape at the downstream breakout was captured using a streak camera in cut‐back experiments. The results from this experiment showed the effects of an initial jet form for short cut‐back distances and as shock propagation progressed, the jet formation was absorbed by the unaffected portions of the wave front. The second method, top‐surface streak imaging, was used to investigate the re‐initiation/downstream propagation of the detonation front and the detonation velocity of the rubberized explosive. These experiments were compared to similar experimental results from machined voids in PBX 9501, an 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane (HMX)‐based explosive, to investigate the interaction of a detonation wave with a 0.5 mm void for different explosives. The experiments were also compared to simulations using a multi‐dimensional and multi‐material hydrodynamic code. These results showed the influence that small features can have on detonation waveshaping and how explosive properties play a key role in that interaction.
炸药内部的不均匀性会影响高能材料的敏感性和起爆波形。空隙对爆炸起爆的影响已有详细记载,但 0.1 毫米到 10 毫米之间的空隙对传播中的爆炸波的影响在很大程度上仍未得到研究。本文利用橡胶化 1,3,5- 三硝基-1,3,5-三嗪(RDX)炸药中的人造空隙,研究了单个圆柱形空隙对起爆波形和再起爆的影响。为研究空洞的影响,现场采用了两种条纹成像技术。第一种是背表面条纹成像,改变样品上空隙的位置,并使用条纹照相机在回切实验中捕捉下游破口处引爆波形的变化。该实验的结果表明,在较短的回切距离内,最初的喷流会产生影响,随着冲击波的传播,喷流会被波前未受影响的部分吸收。第二种方法是顶面条纹成像,用于研究起爆前沿的再起爆/顺流传播以及橡胶炸药的起爆速度。这些实验与 PBX 9501(一种基于 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)的炸药)加工空隙的类似实验结果进行了比较,以研究不同炸药的起爆波与 0.5 毫米空隙的相互作用。实验还与使用多维和多材料流体动力学代码进行的模拟进行了比较。这些结果表明了微小特征对起爆波形的影响,以及炸药特性如何在这种相互作用中发挥关键作用。
{"title":"Influence and comparison of cylindrical engineered defects on detonation waveshape in a rubberized RDX explosive","authors":"Joseph R. Lawrence, Gabriel A. Montoya, Austin D. Koeblitz, Steven F. Son","doi":"10.1002/prep.202300292","DOIUrl":"https://doi.org/10.1002/prep.202300292","url":null,"abstract":"Inhomogeneities within explosives affect the sensitivity and detonation waveshape of energetic materials. The influence of voids on explosive initiation has been well documented; however, the effects that voids between 0.1 mm and 10 mm have on a propagating detonation wave remains largely unexplored. The effect of single cylindrical voids on detonation waveshape and re‐initiation was examined here using manufactured voids in a rubberized 1,3,5‐trinitro‐1,3,5‐triazinane (RDX) explosive. Two streak imaging techniques were fielded to investigate void influence. For the first, back‐surface streak imaging, the location of the void on the samples was changed and the resulting change in detonation waveshape at the downstream breakout was captured using a streak camera in cut‐back experiments. The results from this experiment showed the effects of an initial jet form for short cut‐back distances and as shock propagation progressed, the jet formation was absorbed by the unaffected portions of the wave front. The second method, top‐surface streak imaging, was used to investigate the re‐initiation/downstream propagation of the detonation front and the detonation velocity of the rubberized explosive. These experiments were compared to similar experimental results from machined voids in PBX 9501, an 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane (HMX)‐based explosive, to investigate the interaction of a detonation wave with a 0.5 mm void for different explosives. The experiments were also compared to simulations using a multi‐dimensional and multi‐material hydrodynamic code. These results showed the influence that small features can have on detonation waveshaping and how explosive properties play a key role in that interaction.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"14 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding aging characteristics of a pyrotechnic initiator through performance modeling in Closed Bomb Tests 通过封闭式炸弹试验中的性能建模了解烟火引发剂的老化特性
Pub Date : 2024-05-15 DOI: 10.1002/prep.202300284
Seung‐gyo Jang, Dong‐seong Kim, Doo‐Hee Han
We conducted an analysis of the natural aging characteristics of an electric pyrotechnic initiator stored for 11 years, using 10‐cm3 Closed Bomb Tests (CBTs). For the comparative analysis, we utilized the closed bomb test data from other three batches that were tested 11 years ago when they were produced. Notably, two aged samples exhibited peculiar phenomena in terms of maximum pressure and the time taken to reach it, both of which are the performance indicators of Closed Bomb Tests. The time taken to reach maximum pressure increased in both aged samples compared to the pristine samples. Additionally, while one aged sample demonstrated a higher maximum pressure, the other displayed a significantly lower value compared to the pristine ones. Through statistical analysis of test results from three batches of the reference samples and one batch of aged samples led us to propose the existence of a natural aging effect on the initiator. The increase in time taken to reach maximum pressure compared to the reference samples can be attributed to the phenomenon of an increasing particle size distribution of spherical combustion particles in the present combustion model. Furthermore, the aging of the binder of the initiator charge likely contribute to a relative increase in the size of the combustion particles due to the binder hardening over time. To explain the phenomenon of the pressure initially reaches its maximum value on the CBT pressure‐time curve and subsequently decrease, we introduce the concept of condensation, where the gas phase transitions into liquid and solid phases.
我们利用 10 立方厘米封闭式炸弹试验(CBT),对存放了 11 年的电火花引发剂的自然老化特性进行了分析。在对比分析中,我们使用了 11 年前生产的其他三个批次的封闭式炸弹测试数据。值得注意的是,两个老化样品在最大压力和达到最大压力所需的时间方面表现出特殊现象,而这两项指标都是闭式炸弹试验的性能指标。与原始样品相比,两个老化样品达到最大压力所需的时间都有所增加。此外,一个老化样本的最大压力较高,而另一个样本的最大压力则明显低于原始样本。通过对三批参考样品和一批老化样品的测试结果进行统计分析,我们认为引发剂存在自然老化效应。与参考样品相比,达到最大压力所需时间的增加可归因于本燃烧模型中球形燃烧颗粒粒径分布增加的现象。此外,引发剂装料粘合剂的老化很可能会导致燃烧颗粒的尺寸相对增大,这是因为粘合剂随着时间的推移而硬化。为了解释 CBT 压力-时间曲线上的压力最初达到最大值而随后降低的现象,我们引入了冷凝的概念,即气相转变为液相和固相。
{"title":"Understanding aging characteristics of a pyrotechnic initiator through performance modeling in Closed Bomb Tests","authors":"Seung‐gyo Jang, Dong‐seong Kim, Doo‐Hee Han","doi":"10.1002/prep.202300284","DOIUrl":"https://doi.org/10.1002/prep.202300284","url":null,"abstract":"We conducted an analysis of the natural aging characteristics of an electric pyrotechnic initiator stored for 11 years, using 10‐cm3 Closed Bomb Tests (CBTs). For the comparative analysis, we utilized the closed bomb test data from other three batches that were tested 11 years ago when they were produced. Notably, two aged samples exhibited peculiar phenomena in terms of maximum pressure and the time taken to reach it, both of which are the performance indicators of Closed Bomb Tests. The time taken to reach maximum pressure increased in both aged samples compared to the pristine samples. Additionally, while one aged sample demonstrated a higher maximum pressure, the other displayed a significantly lower value compared to the pristine ones. Through statistical analysis of test results from three batches of the reference samples and one batch of aged samples led us to propose the existence of a natural aging effect on the initiator. The increase in time taken to reach maximum pressure compared to the reference samples can be attributed to the phenomenon of an increasing particle size distribution of spherical combustion particles in the present combustion model. Furthermore, the aging of the binder of the initiator charge likely contribute to a relative increase in the size of the combustion particles due to the binder hardening over time. To explain the phenomenon of the pressure initially reaches its maximum value on the CBT pressure‐time curve and subsequently decrease, we introduce the concept of condensation, where the gas phase transitions into liquid and solid phases.","PeriodicalId":508060,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"24 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Propellants, Explosives, Pyrotechnics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1