{"title":"An exploratory study of the relationship between pulse transit time and blood pressure based on causal inference","authors":"Xinyue Song, Xiaorong Ding","doi":"10.20517/chatmed.2023.30","DOIUrl":null,"url":null,"abstract":"Aim: We propose to examine the causal relationship between the noninvasive features represented by pulse transit time (PTT) and blood pressure (BP), with the aim of mitigating the impact of confounding factor(s) and thus improving the performance of BP estimation.\n Methods: We identified the causal graph of BP and the important noninvasive features extracted from electrocardiogram (ECG) and photoplethysmogram (PPG) via fast causal inference (FCI) algorithm, with the orientations of the edges in the causal graph being determined by the causal generative neural networks (CGNN) algorithm. With the knowledge obtained from the causal graph, we further used hierarchical regression model to estimate BP, and validated the proposed method on 17 subjects.\n Results: We found that the obtained causal graph was almost consistent with the prior knowledge, and heart rate (HR) was one of the main confounding factors of PTT and BP. Incorporating HR into the hierarchical regression model to eliminate its confounding effect on the PTT-based BP estimation, the mean value of SBP and DBP estimation was improved by 1.27 and 1.89 mmHg, respectively, and the mean absolute difference (MAD) was improved by 2.28 and 3.60 mmHg, respectively.\n Conclusion: Causal inference-based method has the potential to clarify the causal relationship between BP and related wearable noninvasive features, which can further shed light on developing new methods for cuffless BP with acceptable accuracy.","PeriodicalId":72693,"journal":{"name":"Connected health and telemedicine","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connected health and telemedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/chatmed.2023.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: We propose to examine the causal relationship between the noninvasive features represented by pulse transit time (PTT) and blood pressure (BP), with the aim of mitigating the impact of confounding factor(s) and thus improving the performance of BP estimation.
Methods: We identified the causal graph of BP and the important noninvasive features extracted from electrocardiogram (ECG) and photoplethysmogram (PPG) via fast causal inference (FCI) algorithm, with the orientations of the edges in the causal graph being determined by the causal generative neural networks (CGNN) algorithm. With the knowledge obtained from the causal graph, we further used hierarchical regression model to estimate BP, and validated the proposed method on 17 subjects.
Results: We found that the obtained causal graph was almost consistent with the prior knowledge, and heart rate (HR) was one of the main confounding factors of PTT and BP. Incorporating HR into the hierarchical regression model to eliminate its confounding effect on the PTT-based BP estimation, the mean value of SBP and DBP estimation was improved by 1.27 and 1.89 mmHg, respectively, and the mean absolute difference (MAD) was improved by 2.28 and 3.60 mmHg, respectively.
Conclusion: Causal inference-based method has the potential to clarify the causal relationship between BP and related wearable noninvasive features, which can further shed light on developing new methods for cuffless BP with acceptable accuracy.