Huynh Vuong Thu Minh, Pankaj Kumar, Gowhar Meraj, Lam Van Thinh, Nigel K. Downes, Tran Van Ty, Nguyen Dinh Giang Nam, Fei Zhang, Bin Liu, Le Thien Hung, Dinh Van Duy, Tran Thi Truc Ly, Nguyen Quoc Luat, Ram Avtar, Mansour Almazroui
{"title":"Climate-driven runoff variability in semi-mountainous reservoirs of the Vietnamese Mekong Delta: Insights for sustainable water management","authors":"Huynh Vuong Thu Minh, Pankaj Kumar, Gowhar Meraj, Lam Van Thinh, Nigel K. Downes, Tran Van Ty, Nguyen Dinh Giang Nam, Fei Zhang, Bin Liu, Le Thien Hung, Dinh Van Duy, Tran Thi Truc Ly, Nguyen Quoc Luat, Ram Avtar, Mansour Almazroui","doi":"10.1002/ird.2968","DOIUrl":null,"url":null,"abstract":"<p>The Mekong Delta, South East Asia's ‘rice bowl’, sustains more than 18 million people through its agricultural output. This yield is secured by efficient water management systems but is susceptible to climatic changes. As Vietnam's policies aim to optimize the delta's semi-mountainous regions reliant on rain-fed agriculture, this study investigates drought risks and climate change impacts on runoff in the O Ta Soc and O Tuk Sa reservoirs, An Giang Province, Vietnam. Using simulation models, we determined runoff volumes for specific rainfall return periods and climate scenarios for the 2030s and 2050s. Using the storm water management model (SWMM), we simulated the reservoir water balance considering rainfall, evaporation and infiltration. Our findings suggest potentially increased runoff and reservoir storage due to intensified monsoons and reduced off-season rainfall. The 4.77 km<sup>2</sup> drainage of the O Ta Soc reservoir could benefit from this, while the 2.55 km<sup>2</sup> drainage of the O Tuk Sa watershed may require alternative water-sourcing strategies. This research offers insights for drought predictions, flood management and water strategies in An Giang. To refine these predictions, future research should consider upcoming rainfall patterns.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1633-1653"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2968","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The Mekong Delta, South East Asia's ‘rice bowl’, sustains more than 18 million people through its agricultural output. This yield is secured by efficient water management systems but is susceptible to climatic changes. As Vietnam's policies aim to optimize the delta's semi-mountainous regions reliant on rain-fed agriculture, this study investigates drought risks and climate change impacts on runoff in the O Ta Soc and O Tuk Sa reservoirs, An Giang Province, Vietnam. Using simulation models, we determined runoff volumes for specific rainfall return periods and climate scenarios for the 2030s and 2050s. Using the storm water management model (SWMM), we simulated the reservoir water balance considering rainfall, evaporation and infiltration. Our findings suggest potentially increased runoff and reservoir storage due to intensified monsoons and reduced off-season rainfall. The 4.77 km2 drainage of the O Ta Soc reservoir could benefit from this, while the 2.55 km2 drainage of the O Tuk Sa watershed may require alternative water-sourcing strategies. This research offers insights for drought predictions, flood management and water strategies in An Giang. To refine these predictions, future research should consider upcoming rainfall patterns.
湄公河三角洲是东南亚的 "稻米之乡",其农业产量养活了 1800 多万人。高效的水资源管理系统确保了这一产量,但也容易受到气候变化的影响。由于越南的政策旨在优化三角洲依赖雨水灌溉的半山区农业,本研究调查了干旱风险和气候变化对越南安江省 O Ta Soc 和 O Tuk Sa 水库径流的影响。利用模拟模型,我们确定了 2030 年代和 2050 年代特定降雨重现期和气候情景下的径流量。利用雨水管理模型(SWMM),我们模拟了考虑降雨、蒸发和渗透的水库水平衡。我们的研究结果表明,由于季风增强和淡季降雨减少,径流和水库蓄水量可能会增加。O Ta Soc 水库 4.77 平方公里的排水系统可从中受益,而 O Tuk Sa 流域 2.55 平方公里的排水系统可能需要采取其他水源策略。这项研究为安江的干旱预测、洪水管理和水资源战略提供了启示。为完善这些预测,未来的研究应考虑未来的降雨模式。
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.