Deep learning DGA malicious domain name detection based on multi-stage feature fusion

Mingtian Xie, Ruifeng He, Aixing He
{"title":"Deep learning DGA malicious domain name detection based on multi-stage feature fusion","authors":"Mingtian Xie, Ruifeng He, Aixing He","doi":"10.54254/2755-2721/64/20241334","DOIUrl":null,"url":null,"abstract":"In recent years, cybersecurity issues have emerged one after another, with botnets extensively utilizing Domain Generation Algorithms (DGA) to evade detection. To address the issue of insufficient detection accuracy in existing DGA malicious domain detection models, this paper proposes a deep learning detection model based on multi-stage feature fusion. By extracting local feature information and positional information of domain name sequences through the fusion of Multilayer Convolutional Neural Network (MCNN) and Transformer, and capturing the long-distance contextual semantic features of domain name sequences through Bi-directional Long Short-Term Memory Network (BiLSTM), these features are finally fused for malicious domain classification. Experimental results show that the model maintains an average Accuracy of 93.26% and an average F1-Score of 93.32% for 33 DGA families, demonstrating better comprehensive detection performance compared to other deep learning detection algorithms.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":"121 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/64/20241334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, cybersecurity issues have emerged one after another, with botnets extensively utilizing Domain Generation Algorithms (DGA) to evade detection. To address the issue of insufficient detection accuracy in existing DGA malicious domain detection models, this paper proposes a deep learning detection model based on multi-stage feature fusion. By extracting local feature information and positional information of domain name sequences through the fusion of Multilayer Convolutional Neural Network (MCNN) and Transformer, and capturing the long-distance contextual semantic features of domain name sequences through Bi-directional Long Short-Term Memory Network (BiLSTM), these features are finally fused for malicious domain classification. Experimental results show that the model maintains an average Accuracy of 93.26% and an average F1-Score of 93.32% for 33 DGA families, demonstrating better comprehensive detection performance compared to other deep learning detection algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多级特征融合的深度学习 DGA 恶意域名检测
近年来,网络安全问题层出不穷,僵尸网络广泛利用域生成算法(DGA)逃避检测。针对现有DGA恶意域检测模型检测精度不足的问题,本文提出了一种基于多级特征融合的深度学习检测模型。通过多层卷积神经网络(MCNN)和变换器的融合提取域名序列的局部特征信息和位置信息,并通过双向长短期记忆网络(BiLSTM)捕捉域名序列的长距离上下文语义特征,最后将这些特征融合进行恶意域名分类。实验结果表明,与其他深度学习检测算法相比,该模型在 33 个 DGA 系列中保持了 93.26% 的平均准确率和 93.32% 的平均 F1 分数,显示了更好的综合检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of seamless assistance with Google Assistant leveraging cloud computing Deep learning vulnerability analysis against adversarial attacks Comparison of deep learning models based on Chest X-ray image classification DOA estimation technology based on array signal processing nested array Precise positioning and prediction system for autonomous driving based on generative artificial intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1