Random forest regression on pullout resistance of a pile

Q3 Engineering Pollack Periodica Pub Date : 2024-05-15 DOI:10.1556/606.2024.01052
Shaymaa Alsamia, E. Koch
{"title":"Random forest regression on pullout resistance of a pile","authors":"Shaymaa Alsamia, E. Koch","doi":"10.1556/606.2024.01052","DOIUrl":null,"url":null,"abstract":"This research aims to study the pullout resistance of a helical pile using three methods of machine learning techniques, which are: random forest regression, support vector regression, and adaptive neuro-fuzzy inference system, based on experimental results of a helical pile. The performance of these three techniques has been d compared and the results show that random forest algorithm has best performance than neuro-fuzzy inference system and support vector technique. The results show that machine learning considered a good tool in terms of estimating the pullout resistance of helical piles in the soil.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":"118 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2024.01052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to study the pullout resistance of a helical pile using three methods of machine learning techniques, which are: random forest regression, support vector regression, and adaptive neuro-fuzzy inference system, based on experimental results of a helical pile. The performance of these three techniques has been d compared and the results show that random forest algorithm has best performance than neuro-fuzzy inference system and support vector technique. The results show that machine learning considered a good tool in terms of estimating the pullout resistance of helical piles in the soil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桩的抗拔能力的随机森林回归
本研究旨在根据螺旋桩的实验结果,使用随机森林回归、支持向量回归和自适应神经模糊推理系统这三种机器学习技术方法研究螺旋桩的抗拔能力。对这三种技术的性能进行了比较,结果表明随机森林算法比神经模糊推理系统和支持向量技术的性能最好。结果表明,在估算土壤中螺旋桩的抗拔能力方面,机器学习被认为是一种很好的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pollack Periodica
Pollack Periodica Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
82
期刊介绍: Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.
期刊最新文献
Porosity and pore morphology characteristics of zirconia-alumina bioceramics The practical implementations of axes in the design of a systematic office layout Collision and contiguity in the transformation of Prishtina's urban form Concrete's fire resistance improvement with waste glass and ceramic aggregates Advanced facial recognition with LBP-URIGL hybrid descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1