Sajjad H. Hendi, Hazeem B. Taher, Karim Q. Hussein
{"title":"Advanced facial recognition with LBP-URIGL hybrid descriptors","authors":"Sajjad H. Hendi, Hazeem B. Taher, Karim Q. Hussein","doi":"10.1556/606.2024.00972","DOIUrl":null,"url":null,"abstract":"Facial recognition technology is transformative in security and human-machine interaction, reshaping societal interactions. Robust descriptors, essential for high precision in machine learning tasks like recognition and recall, are integral to this transformation. This paper presents a hybrid model enhancing local binary pattern descriptors for facial representation. By integrating rotation-invariant local binary pattern with uniform rotation-invariant grey-level co-occurrence, employing linear discriminant analysis for feature space optimization, and utilizing an artificial neural network for classification, the model achieves exceptional accuracy rates of 100% for Olivetti Research Laboratory, 99.98% for Maastricht University Computer Vision Test, and 99.17% for Extended Yale B, surpassing traditional methods significantly.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":"63 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2024.00972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Facial recognition technology is transformative in security and human-machine interaction, reshaping societal interactions. Robust descriptors, essential for high precision in machine learning tasks like recognition and recall, are integral to this transformation. This paper presents a hybrid model enhancing local binary pattern descriptors for facial representation. By integrating rotation-invariant local binary pattern with uniform rotation-invariant grey-level co-occurrence, employing linear discriminant analysis for feature space optimization, and utilizing an artificial neural network for classification, the model achieves exceptional accuracy rates of 100% for Olivetti Research Laboratory, 99.98% for Maastricht University Computer Vision Test, and 99.17% for Extended Yale B, surpassing traditional methods significantly.
期刊介绍:
Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.