Optical spike amplitude weighting and neuromimetic rate coding using a joint VCSEL-MRR neuromorphic photonic system

M. Hejda, E. A. Doris, S. Bilodeau, J. Robertson, D. Owen-Newns, B. Shastri, Paul R. Prucnal, Antonio Hurtado
{"title":"Optical spike amplitude weighting and neuromimetic rate coding using a joint VCSEL-MRR neuromorphic photonic system","authors":"M. Hejda, E. A. Doris, S. Bilodeau, J. Robertson, D. Owen-Newns, B. Shastri, Paul R. Prucnal, Antonio Hurtado","doi":"10.1088/2634-4386/ad4b5b","DOIUrl":null,"url":null,"abstract":"\n Spiking neurons and neural networks constitute a fundamental building block for brain-inspired computing, which is poised to benefit significantly from photonic hardware implementations. In this work, we experimentally investigate an interconnected optical neuromorphic system based on an ultrafast spiking vertical cavity surface emitting laser (VCSEL) neuron and a silicon photonics (SiPh) integrated micro-ring resonator (MRR). We experimentally demonstrate two different functional arrangements of these devices: first, we show that MRR weight banks can be used in conjunction with the spiking VCSEL-neurons to perform amplitude weighting of sub-ns optical spiking signals. Second, we show that a continuously firing VCSEL-neuron can be directly modulated using a locking signal propagated through a single weighting MRR, and we utilize this functionality to perform optical spike firing rate-coding via thermal tuning of the MRR. Given the significant track record of both integrated weight banks and photonic VCSEL-neurons, we believe these results demonstrate the viability of combining these two classes of devices for use in functional neuromorphic photonic systems.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"26 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ad4b5b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neurons and neural networks constitute a fundamental building block for brain-inspired computing, which is poised to benefit significantly from photonic hardware implementations. In this work, we experimentally investigate an interconnected optical neuromorphic system based on an ultrafast spiking vertical cavity surface emitting laser (VCSEL) neuron and a silicon photonics (SiPh) integrated micro-ring resonator (MRR). We experimentally demonstrate two different functional arrangements of these devices: first, we show that MRR weight banks can be used in conjunction with the spiking VCSEL-neurons to perform amplitude weighting of sub-ns optical spiking signals. Second, we show that a continuously firing VCSEL-neuron can be directly modulated using a locking signal propagated through a single weighting MRR, and we utilize this functionality to perform optical spike firing rate-coding via thermal tuning of the MRR. Given the significant track record of both integrated weight banks and photonic VCSEL-neurons, we believe these results demonstrate the viability of combining these two classes of devices for use in functional neuromorphic photonic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用联合 VCSEL-MRR 神经形态光子系统实现光学尖峰振幅加权和仿神经速率编码
尖峰神经元和神经网络构成了脑启发计算的基本构件,光子硬件的实现将使其受益匪浅。在这项工作中,我们通过实验研究了基于超快尖峰垂直腔表面发射激光器(VCSEL)神经元和硅光子集成微环谐振器(MRR)的互联光学神经形态系统。我们在实验中展示了这些设备的两种不同功能安排:首先,我们展示了 MRR 权重库可与尖峰垂直腔面发射激光神经元结合使用,对亚纳秒级光学尖峰信号进行振幅加权。其次,我们展示了连续发射的 VCSEL 神经元可以直接使用通过单个加权 MRR 传播的锁定信号进行调制,并利用这一功能通过 MRR 的热调谐来执行光学尖峰发射速率编码。鉴于集成权重库和光子 VCSEL 神经元都取得了显著的成绩,我们相信这些成果证明了将这两类器件结合起来用于功能性神经形态光子系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Difficulties and approaches in enabling learning-in-memory using crossbar arrays of memristors A liquid optical memristor using photochromic effect and capillary effect Tissue-like interfacing of planar electrochemical organic neuromorphic devices Implementation of two-step gradual reset scheme for enhancing state uniformity of 2D hBN-based memristors for image processing Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1