Combining simulation and experimental data via surrogate modelling of continuum dislocation dynamics simulations

Balduin Katzer, Daniel Betsche, Felix von Hoegen, Benjamin Jochum, Klemens Böhm, Katrin Schulz
{"title":"Combining simulation and experimental data via surrogate modelling of continuum dislocation dynamics simulations","authors":"Balduin Katzer, Daniel Betsche, Felix von Hoegen, Benjamin Jochum, Klemens Böhm, Katrin Schulz","doi":"10.1088/1361-651x/ad4b4c","DOIUrl":null,"url":null,"abstract":"\n Several computational models have been introduced in recent years to yield comprehensive insights into microstructural evolution analyses. However, the identification of the correct input parameters to a simulation that corresponds to a certain experimental result is a major challenge on this length scale. To complement simulation results with experimental data (and vice versa) is not trivial since, e.g., simulation model parameters might lack a physical understanding or uncertainties in the experimental data are neglected. Computational costs are another challenge mesoscale models always have to face, so comprehensive parameter studies can be costly. In this paper, we introduce a surrogate model to circumvent continuum dislocation dynamics simulation by a data-driven linkage between well-defined input parameters and output data and vice versa. We present meaningful results for a forward surrogate formulation that predicts simulation output based on the input parameter space, as well as for the inverse approach that derives the input parameter space based on simulation as well as experimental output quantities. This enables, e.g., a direct derivation of the input parameter space of a continuum dislocation dynamics simulation based on experimentally provided stress-strain data.","PeriodicalId":503047,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad4b4c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several computational models have been introduced in recent years to yield comprehensive insights into microstructural evolution analyses. However, the identification of the correct input parameters to a simulation that corresponds to a certain experimental result is a major challenge on this length scale. To complement simulation results with experimental data (and vice versa) is not trivial since, e.g., simulation model parameters might lack a physical understanding or uncertainties in the experimental data are neglected. Computational costs are another challenge mesoscale models always have to face, so comprehensive parameter studies can be costly. In this paper, we introduce a surrogate model to circumvent continuum dislocation dynamics simulation by a data-driven linkage between well-defined input parameters and output data and vice versa. We present meaningful results for a forward surrogate formulation that predicts simulation output based on the input parameter space, as well as for the inverse approach that derives the input parameter space based on simulation as well as experimental output quantities. This enables, e.g., a direct derivation of the input parameter space of a continuum dislocation dynamics simulation based on experimentally provided stress-strain data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过连续位错动力学模拟的代理建模将模拟和实验数据结合起来
近年来,一些计算模型被引入到微结构演变分析中,以获得全面的见解。然而,如何确定与特定实验结果相对应的正确模拟输入参数是这一长度尺度上的一大挑战。用实验数据补充模拟结果(反之亦然)并非易事,因为模拟模型参数可能缺乏物理理解,或者实验数据的不确定性被忽视。计算成本是中尺度模型始终面临的另一个挑战,因此全面的参数研究可能成本高昂。在本文中,我们引入了一种代用模型,通过明确定义的输入参数和输出数据之间的数据驱动联系来规避连续位错动力学模拟,反之亦然。我们介绍了基于输入参数空间预测模拟输出的正向代用公式以及基于模拟和实验输出量推导输入参数空间的反向方法的有意义的结果。例如,这样就能根据实验提供的应力应变数据直接推导出连续位错动力学模拟的输入参数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the shape memory behaviour of GnP-enhanced nanocomposites: A comparative study between experimental and finite element analysis Simulating hindered grain boundary diffusion using the smoothed boundary method Properties of radiation-induced point defects in austenitic steels: a molecular dynamics study Crystal Plasticity based Constitutive Model for Deformation in Metastable β Titanium Alloys Combining simulation and experimental data via surrogate modelling of continuum dislocation dynamics simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1