Utilizing integrated neutron diffraction and elastoplastic self-consistent crystal plasticity model to quantitatively assess the strengthening mechanism in Al-12.5Ce and Al-12.5Ce-0.4Mg alloys

Xiaohua Hu, Jiahao Cheng, Kashif Nawaz, Michael S Kesler, Yan Chen, Ke An
{"title":"Utilizing integrated neutron diffraction and elastoplastic self-consistent crystal plasticity model to quantitatively assess the strengthening mechanism in Al-12.5Ce and Al-12.5Ce-0.4Mg alloys","authors":"Xiaohua Hu, Jiahao Cheng, Kashif Nawaz, Michael S Kesler, Yan Chen, Ke An","doi":"10.1088/1361-651x/ad4ab0","DOIUrl":null,"url":null,"abstract":"\n An integrated in-situ neutron diffraction and elastic plastic self-consistent crystal plasticity (EPSC-CP) modeling scheme is performed on a binary Al-12Ce alloy and a ternary Al-12Ce-0.4Mg alloys. Using this scheme, the constitutive parameters, i.e. elastic constants and slip system parameters of individual phases can be calibrated which can be used in microstructure-based crystal plasticity models to predict materials performance. From this study, it is shown that the elastic constants of Al11Ce3 intermetallics calculated from DFT calculation in the literature are rather accurate. When applied to the EPSC-CP model, the lattice strains of both the binary and ternary alloys are correctly predicted as compared with experiments, and large lattice strain differences between Al (100) plane and Al11Ce3 (010) plane are demonstrated. The slip system parameters calibrated by the scheme shows that the addition of 0.4 wt% Mg in the alloy has little influence on the critical resolved shear stress (CRSS) of initial dislocation glide in the Al matrix which caused plastic yield in the material. This can be explained by the very dilute Mg solute content in the Al solid solution, causing large spacing of Al-Mg lattice misfit sites and little impact on resistance of dislocation glide at initial yield. The 0.4 wt% Mg addition, on the other hand, has a large influence on the hardening term in the slip system parameters, indicating those Al-Mg misfit sites do help dislocation accumulation during the deformation. The impact of dilute Mg addition on the Al slip system parameters is also reflected in the flow behavior of the ternary alloy: little impact on the yield stress, but a large impact on working hardening and tensile strength of the materials which is consistent with the literature.","PeriodicalId":503047,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"2 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad4ab0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An integrated in-situ neutron diffraction and elastic plastic self-consistent crystal plasticity (EPSC-CP) modeling scheme is performed on a binary Al-12Ce alloy and a ternary Al-12Ce-0.4Mg alloys. Using this scheme, the constitutive parameters, i.e. elastic constants and slip system parameters of individual phases can be calibrated which can be used in microstructure-based crystal plasticity models to predict materials performance. From this study, it is shown that the elastic constants of Al11Ce3 intermetallics calculated from DFT calculation in the literature are rather accurate. When applied to the EPSC-CP model, the lattice strains of both the binary and ternary alloys are correctly predicted as compared with experiments, and large lattice strain differences between Al (100) plane and Al11Ce3 (010) plane are demonstrated. The slip system parameters calibrated by the scheme shows that the addition of 0.4 wt% Mg in the alloy has little influence on the critical resolved shear stress (CRSS) of initial dislocation glide in the Al matrix which caused plastic yield in the material. This can be explained by the very dilute Mg solute content in the Al solid solution, causing large spacing of Al-Mg lattice misfit sites and little impact on resistance of dislocation glide at initial yield. The 0.4 wt% Mg addition, on the other hand, has a large influence on the hardening term in the slip system parameters, indicating those Al-Mg misfit sites do help dislocation accumulation during the deformation. The impact of dilute Mg addition on the Al slip system parameters is also reflected in the flow behavior of the ternary alloy: little impact on the yield stress, but a large impact on working hardening and tensile strength of the materials which is consistent with the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用综合中子衍射和弹塑性自洽晶体塑性模型定量评估 Al-12.5Ce 和 Al-12.5Ce-0.4Mg 合金的强化机制
对二元 Al-12Ce 合金和三元 Al-12Ce-0.4Mg 合金进行了原位中子衍射和弹塑性自洽晶体塑性(EPSC-CP)综合建模。利用该方案,可以校准各相的构成参数,即弹性常数和滑移系统参数,这些参数可用于基于微观结构的晶体塑性模型,以预测材料的性能。本研究表明,文献中通过 DFT 计算得出的 Al11Ce3 金属间化合物弹性常数相当准确。当应用于 EPSC-CP 模型时,与实验相比,二元合金和三元合金的晶格应变都得到了正确的预测,并证明了 Al (100) 面和 Al11Ce3 (010) 面之间存在较大的晶格应变差异。该方案校准的滑移系统参数表明,合金中添加 0.4 wt% 的镁对导致材料塑性屈服的铝基体中初始位错滑移的临界分辨剪切应力(CRSS)影响很小。这是因为铝固溶体中的镁溶质含量非常稀,导致铝镁晶格错位点的间距较大,对初始屈服时位错滑行的阻力影响很小。另一方面,0.4 wt% 的镁添加量对滑移系统参数中的硬化项有很大影响,表明这些铝镁错配点确实有助于变形过程中的位错累积。稀释镁添加量对铝滑移体系参数的影响也反映在三元合金的流动行为上:对屈服应力影响很小,但对材料的加工硬化和抗拉强度影响很大,这与文献报道一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the shape memory behaviour of GnP-enhanced nanocomposites: A comparative study between experimental and finite element analysis Simulating hindered grain boundary diffusion using the smoothed boundary method Properties of radiation-induced point defects in austenitic steels: a molecular dynamics study Crystal Plasticity based Constitutive Model for Deformation in Metastable β Titanium Alloys Combining simulation and experimental data via surrogate modelling of continuum dislocation dynamics simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1