Dynamic analysis of tethered defunct satellites with solar panels

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrodynamics Pub Date : 2024-05-13 DOI:10.1007/s42064-024-0206-8
Rui Qi, Yang Zhang, Heng Jiang, Rui Zhong
{"title":"Dynamic analysis of tethered defunct satellites with solar panels","authors":"Rui Qi,&nbsp;Yang Zhang,&nbsp;Heng Jiang,&nbsp;Rui Zhong","doi":"10.1007/s42064-024-0206-8","DOIUrl":null,"url":null,"abstract":"<div><p>A precise dynamic model for towing and removing a defunct satellite with solar panels in orbit using a tethered net often has low computational efficiency owing to the complex contact and collision between the net and panels, which is not conducive to research. To solve this problem, a “single main tether–multiple subtether” bifurcation structure with beads was employed as the tethered net model. This study investigated the dynamics of tethered defunct satellites with solar panels, particularly the behavior of the attitude of the tethered satellite, oscillation of the main tether, and vibration of solar panels under different conditions. The results showed that different attachment configurations of the subtethers and the flexibility of the main tether have an evident impact on the dynamic characteristics of the system.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"8 2","pages":"297 - 309"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0206-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A precise dynamic model for towing and removing a defunct satellite with solar panels in orbit using a tethered net often has low computational efficiency owing to the complex contact and collision between the net and panels, which is not conducive to research. To solve this problem, a “single main tether–multiple subtether” bifurcation structure with beads was employed as the tethered net model. This study investigated the dynamics of tethered defunct satellites with solar panels, particularly the behavior of the attitude of the tethered satellite, oscillation of the main tether, and vibration of solar panels under different conditions. The results showed that different attachment configurations of the subtethers and the flexibility of the main tether have an evident impact on the dynamic characteristics of the system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带太阳能电池板的系留失效卫星的动态分析
由于系留网与太阳能电池板之间复杂的接触和碰撞,利用系留网牵引和移除轨道上带有太阳能电池板的失效卫星的精确动态模型往往计算效率较低,不利于研究。为解决这一问题,采用了带珠子的 "单主系绳-多副系绳 "分叉结构作为系留网模型。该研究探讨了带有太阳能电池板的系留失效卫星的动力学特性,特别是不同条件下系留卫星的姿态、主系绳的振荡和太阳能电池板的振动行为。结果表明,副系留器的不同连接配置和主系留器的灵活性对系统的动态特性有明显的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
期刊最新文献
Reinforced Lyapunov controllers for low-thrust lunar transfers Aerogel-based collection of ejecta material from asteroids from libration point orbits: Dynamics and capture design Minimum-time rendezvous for Sun-facing diffractive solar sails with diverse deflection angles Designing a concurrent detumbling and redirection mission for asteroid mining purposes via optimization Luring cooperative capture guidance strategy for the pursuit—evasion game under incomplete target information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1