Husnain Saghir, Iftikhar Ahmad, Manabu Kano, Hakan Caliskan, Hiki Hong
{"title":"Prediction and optimisation of gasoline quality in petroleum refining: The use of machine learning model as a surrogate in optimisation framework","authors":"Husnain Saghir, Iftikhar Ahmad, Manabu Kano, Hakan Caliskan, Hiki Hong","doi":"10.1049/cit2.12324","DOIUrl":null,"url":null,"abstract":"<p>Hardware-based sensing frameworks such as cooperative fuel research engines are conventionally used to monitor research octane number (RON) in the petroleum refining industry. Machine learning techniques are employed to predict the RON of integrated naphtha reforming and isomerisation processes. A dynamic Aspen HYSYS model was used to generate data by introducing artificial uncertainties in the range of ±5% in process conditions, such as temperature, flow rates, etc. The generated data was used to train support vector machines (SVM), Gaussian process regression (GPR), artificial neural networks (ANN), regression trees (RT), and ensemble trees (ET). Hyperparameter tuning was performed to enhance the prediction capabilities of GPR, ANN, SVM, ET and RT models. Performance analysis of the models indicates that GPR, ANN, and SVM with <i>R</i><sup>2</sup> values of 0.99, 0.978, and 0.979 and RMSE values of 0.108, 0.262, and 0.258, respectively performed better than the remaining models and had the prediction capability to capture the RON dependence on predictor variables. ET and RT had an <i>R</i><sup>2</sup> value of 0.94 and 0.89, respectively. The GPR model was used as a surrogate model for fitness function evaluations in two optimisation frameworks based on genetic algorithm and particle swarm method. Optimal parameter values found by the optimisation methodology increased the RON value by 3.52%. The proposed methodology of surrogate-based optimisation will provide a platform for plant-level implementation to realise the concept of industry 4.0 in the refinery.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 5","pages":"1185-1198"},"PeriodicalIF":8.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12324","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12324","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hardware-based sensing frameworks such as cooperative fuel research engines are conventionally used to monitor research octane number (RON) in the petroleum refining industry. Machine learning techniques are employed to predict the RON of integrated naphtha reforming and isomerisation processes. A dynamic Aspen HYSYS model was used to generate data by introducing artificial uncertainties in the range of ±5% in process conditions, such as temperature, flow rates, etc. The generated data was used to train support vector machines (SVM), Gaussian process regression (GPR), artificial neural networks (ANN), regression trees (RT), and ensemble trees (ET). Hyperparameter tuning was performed to enhance the prediction capabilities of GPR, ANN, SVM, ET and RT models. Performance analysis of the models indicates that GPR, ANN, and SVM with R2 values of 0.99, 0.978, and 0.979 and RMSE values of 0.108, 0.262, and 0.258, respectively performed better than the remaining models and had the prediction capability to capture the RON dependence on predictor variables. ET and RT had an R2 value of 0.94 and 0.89, respectively. The GPR model was used as a surrogate model for fitness function evaluations in two optimisation frameworks based on genetic algorithm and particle swarm method. Optimal parameter values found by the optimisation methodology increased the RON value by 3.52%. The proposed methodology of surrogate-based optimisation will provide a platform for plant-level implementation to realise the concept of industry 4.0 in the refinery.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.