Fostering Privacy in Collaborative Data Sharing via Auto-encoder Latent Space Embedding

Vinayak Raja, Bhuvi Chopra
{"title":"Fostering Privacy in Collaborative Data Sharing via Auto-encoder Latent Space Embedding","authors":"Vinayak Raja, Bhuvi Chopra","doi":"10.60087/jaigs.v4i1.129","DOIUrl":null,"url":null,"abstract":"Securing privacy in machine learning via collaborative data sharing is essential for organizations seeking to harness collective data while upholding confidentiality. This becomes especially vital when protecting sensitive information across the entire machine learning pipeline, from model training to inference. This paper presents an innovative framework utilizing Representation Learning via autoencoders to generate privacy-preserving embedded data. As a result, organizations can distribute these representations, enhancing the performance of machine learning models in situations where multiple data sources converge for a unified predictive task downstream.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"106 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v4i1.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Securing privacy in machine learning via collaborative data sharing is essential for organizations seeking to harness collective data while upholding confidentiality. This becomes especially vital when protecting sensitive information across the entire machine learning pipeline, from model training to inference. This paper presents an innovative framework utilizing Representation Learning via autoencoders to generate privacy-preserving embedded data. As a result, organizations can distribute these representations, enhancing the performance of machine learning models in situations where multiple data sources converge for a unified predictive task downstream.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自动编码器潜空间嵌入促进协作数据共享中的隐私保护
通过协作数据共享来保护机器学习中的隐私,对于希望在利用集体数据的同时维护机密性的企业来说至关重要。在保护从模型训练到推理的整个机器学习管道中的敏感信息时,这一点变得尤为重要。本文提出了一个创新框架,通过自动编码器利用表征学习生成保护隐私的嵌入式数据。因此,企业可以分发这些表征,从而在多个数据源汇聚到下游执行统一预测任务的情况下提高机器学习模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion Utilizing the Internet of Things (IoT), Artificial Intelligence, Machine Learning, and Vehicle Telematics for Sustainable Growth in Small and Medium Firms (SMEs) Role of Artificial Intelligence and Big Data in Sustainable Entrepreneurship Impact of AI on Education: Innovative Tools and Trends Critique of Modern Feminism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1