{"title":"Unraveling the Dynamic Relationship between Neighborhood Deprivation and Walkability over Time: A Machine Learning Approach","authors":"Qian Wang, Guie Li, Min Weng","doi":"10.3390/land13050667","DOIUrl":null,"url":null,"abstract":"Creating a walkable environment is an essential step toward the 2030 Sustainable Development Goals. Nevertheless, not all people can enjoy a walkable environment, and neighborhoods with different socioeconomic status are found to vary greatly with walkability. Former studies have typically unraveled the relationship between neighborhood deprivation and walkability from a temporally static perspective and the produced estimations to a point-in-time snapshot were believed to incorporate great uncertainties. The ways in which neighborhood walkability changes over time in association with deprivation remain unclear. Using the case of the Hangzhou metropolitan area, we first measured the neighborhood walkability from 2016 to 2018 by calculating a set of revised walk scores. Further, we applied a machine learning algorithm, the kernel-based regularized least squares regression in particular, to unravel how neighborhood walkability changes in relation to deprivation over time. The results not only capture the nonlinearity in the relationship between neighborhood deprivation and walkability over time, but also highlight the marginal effects of each neighborhood deprivation indicator. Additionally, comparisons of the outputs between the machine learning algorithm and OLS regression illustrated that the machine learning approach did tell a different story and should contribute to remedying the contradictory conclusions in earlier studies. This paper is believed to renew the understanding of social inequalities in walkability by bringing the significance of temporal dynamics and structural interdependences to the fore.","PeriodicalId":37702,"journal":{"name":"Land","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/land13050667","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Creating a walkable environment is an essential step toward the 2030 Sustainable Development Goals. Nevertheless, not all people can enjoy a walkable environment, and neighborhoods with different socioeconomic status are found to vary greatly with walkability. Former studies have typically unraveled the relationship between neighborhood deprivation and walkability from a temporally static perspective and the produced estimations to a point-in-time snapshot were believed to incorporate great uncertainties. The ways in which neighborhood walkability changes over time in association with deprivation remain unclear. Using the case of the Hangzhou metropolitan area, we first measured the neighborhood walkability from 2016 to 2018 by calculating a set of revised walk scores. Further, we applied a machine learning algorithm, the kernel-based regularized least squares regression in particular, to unravel how neighborhood walkability changes in relation to deprivation over time. The results not only capture the nonlinearity in the relationship between neighborhood deprivation and walkability over time, but also highlight the marginal effects of each neighborhood deprivation indicator. Additionally, comparisons of the outputs between the machine learning algorithm and OLS regression illustrated that the machine learning approach did tell a different story and should contribute to remedying the contradictory conclusions in earlier studies. This paper is believed to renew the understanding of social inequalities in walkability by bringing the significance of temporal dynamics and structural interdependences to the fore.
LandENVIRONMENTAL STUDIES-Nature and Landscape Conservation
CiteScore
4.90
自引率
23.10%
发文量
1927
期刊介绍:
Land is an international and cross-disciplinary, peer-reviewed, open access journal of land system science, landscape, soil–sediment–water systems, urban study, land–climate interactions, water–energy–land–food (WELF) nexus, biodiversity research and health nexus, land modelling and data processing, ecosystem services, and multifunctionality and sustainability etc., published monthly online by MDPI. The International Association for Landscape Ecology (IALE), European Land-use Institute (ELI), and Landscape Institute (LI) are affiliated with Land, and their members receive a discount on the article processing charge.