New Accomplishments on the Equivalence of the First-Order Displacement-Based Zigzag Theories through a Unified Formulation

M. Di Sciuva, M. Sorrenti
{"title":"New Accomplishments on the Equivalence of the First-Order Displacement-Based Zigzag Theories through a Unified Formulation","authors":"M. Di Sciuva, M. Sorrenti","doi":"10.3390/jcs8050181","DOIUrl":null,"url":null,"abstract":"The paper presents a critical review and new accomplishments on the equivalence of the first-order displacement-based zigzag theories for laminated composite and sandwich structures. Zigzag theories (ZZTs) have widely spread among researchers over the last few decades thanks to their accuracy in predicting the response of multilayered composite and sandwich structures while retaining the simplicity of their underlying equivalent single-layer (ESL) theory. The displacement field consists of two main contributions: the global one, able to describe the overall structural behaviour, and the local layer-wise one that considers the transverse shear continuity at the layer interfaces that describe the “zigzag” displacement pattern typical of multilayered structures. In the framework of displacement-based linear ZZTs, various assumptions have been made on the local contribution, and different theories have been deduced. This paper aims to provide a unified formulation for first-order ZZTs, highlighting some common aspects and underlying equivalencies with existing formulations. The mathematical demonstrations and the numerical examples prove the equivalence of the approaches to characterising local zigzag enrichment. Finally, it is demonstrated that the kinematic assumptions are the discriminants of the ZZTs’ accuracy.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"101 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8050181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a critical review and new accomplishments on the equivalence of the first-order displacement-based zigzag theories for laminated composite and sandwich structures. Zigzag theories (ZZTs) have widely spread among researchers over the last few decades thanks to their accuracy in predicting the response of multilayered composite and sandwich structures while retaining the simplicity of their underlying equivalent single-layer (ESL) theory. The displacement field consists of two main contributions: the global one, able to describe the overall structural behaviour, and the local layer-wise one that considers the transverse shear continuity at the layer interfaces that describe the “zigzag” displacement pattern typical of multilayered structures. In the framework of displacement-based linear ZZTs, various assumptions have been made on the local contribution, and different theories have been deduced. This paper aims to provide a unified formulation for first-order ZZTs, highlighting some common aspects and underlying equivalencies with existing formulations. The mathematical demonstrations and the numerical examples prove the equivalence of the approaches to characterising local zigzag enrichment. Finally, it is demonstrated that the kinematic assumptions are the discriminants of the ZZTs’ accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过统一表述实现基于一阶位移的之字形理论等效性的新成果
本文对基于一阶位移的人字形理论在层状复合材料和夹层结构中的等效性进行了深入评述,并提出了新的研究成果。在过去几十年中,人字形理论(ZZTs)因其在预测多层复合材料和夹层结构响应方面的准确性而在研究人员中广为流传,同时还保留了其基础等效单层(ESL)理论的简洁性。位移场由两个主要部分组成:一个是能够描述整体结构行为的全局位移场,另一个是考虑层界面横向剪切连续性的局部层位移场,它描述了多层结构典型的 "之 "字形位移模式。在基于位移的线性 ZZT 框架中,对局部贡献做了各种假设,并推导出了不同的理论。本文旨在为一阶 ZZT 提供一个统一的表述,强调与现有表述的一些共同点和基本等价性。数学演示和数值示例证明了描述局部之字形富集的方法的等价性。最后,还证明了运动学假设是 ZZTs 精度的判别因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the Incorporation of Olive Tree Pruning Sawdust in the Production of Lightweight Mortars Properties of Composites Based on Polylactide Filled with Cork Filler Influence of Silica Nanoparticles on the Physical Properties of Random Polypropylene Analytical and Experimental Behaviour of GFRP-Reinforced Concrete Columns under Fire Loading Mechanical Characterization of Hybrid Steel Wire Mesh/Basalt/Epoxy Fiber-Reinforced Polymer Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1