Design and Development of an Air–Land Amphibious Inspection Drone for Fusion Reactor

Drones Pub Date : 2024-05-11 DOI:10.3390/drones8050190
Guodong Qin, Youzhi Xu, Wei He, Qian Qi, Lei Zheng, Haimin Hu, Yong Cheng, Congju Zuo, Deyang Zhang, Aihong Ji
{"title":"Design and Development of an Air–Land Amphibious Inspection Drone for Fusion Reactor","authors":"Guodong Qin, Youzhi Xu, Wei He, Qian Qi, Lei Zheng, Haimin Hu, Yong Cheng, Congju Zuo, Deyang Zhang, Aihong Ji","doi":"10.3390/drones8050190","DOIUrl":null,"url":null,"abstract":"This paper proposes a design method for a miniature air–land amphibious inspection drone (AAID) to be used in the latest compact fusion reactor discharge gap observation mission. Utilizing the amphibious function, the AAID realizes the function of crawling transportation in the narrow maintenance channel and flying observation inside the fusion reactor. To realize miniaturization, the mobile platform adopts the bionic cockroach wheel-legged system to improve the obstacle-crossing ability. The flight platform adopts an integrated rotor structure with frame and control to reduce the overall weight of the AAID. Based on the AAID dynamic model and the optimal control method, the control strategies under flight mode, hover mode and fly–crawl transition are designed, respectively. Finally, the prototype of the AAID is established, and the crawling, hovering, and fly–crawling transition control experiments are carried out, respectively. The test results show that the maximum crawling inclination of the AAID is more than 20°. The roll angle, pitch angle, and yaw angle deviation of the AAID during hovering are all less than 2°. The landing success rate of the AAID during the fly–crawl transition phase also exceeded 77%, proving the effectiveness of the structural design and dynamic control strategy.","PeriodicalId":507567,"journal":{"name":"Drones","volume":" 1122","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones8050190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a design method for a miniature air–land amphibious inspection drone (AAID) to be used in the latest compact fusion reactor discharge gap observation mission. Utilizing the amphibious function, the AAID realizes the function of crawling transportation in the narrow maintenance channel and flying observation inside the fusion reactor. To realize miniaturization, the mobile platform adopts the bionic cockroach wheel-legged system to improve the obstacle-crossing ability. The flight platform adopts an integrated rotor structure with frame and control to reduce the overall weight of the AAID. Based on the AAID dynamic model and the optimal control method, the control strategies under flight mode, hover mode and fly–crawl transition are designed, respectively. Finally, the prototype of the AAID is established, and the crawling, hovering, and fly–crawling transition control experiments are carried out, respectively. The test results show that the maximum crawling inclination of the AAID is more than 20°. The roll angle, pitch angle, and yaw angle deviation of the AAID during hovering are all less than 2°. The landing success rate of the AAID during the fly–crawl transition phase also exceeded 77%, proving the effectiveness of the structural design and dynamic control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚变反应堆空陆两栖巡检无人机的设计与开发
本文提出了一种微型空陆两栖巡检无人机(AAID)的设计方法,用于最新的紧凑型聚变堆放电间隙观测任务。利用两栖功能,AAID 实现了在狭窄维修通道内爬行运输和聚变堆内飞行观测的功能。为实现小型化,移动平台采用仿生蟑螂轮腿系统,提高了越障能力。飞行平台采用机架与控制一体化的旋翼结构,减轻了 AAID 的整体重量。基于 AAID 动态模型和最优控制方法,分别设计了飞行模式、悬停模式和飞爬转换模式下的控制策略。最后,建立了 AAID 原型机,并分别进行了爬行、悬停和飞爬过渡控制实验。试验结果表明,AAID 的最大爬行倾角大于 20°。AAID 在悬停过程中的滚动角、俯仰角和偏航角偏差均小于 2°。AAID 在飞行-爬行过渡阶段的着陆成功率也超过了 77%,证明了结构设计和动态控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Nonlinear Model Predictive Control Based Fast Trajectory Tracking for a Quadrotor Unmanned Aerial Vehicle A General Method for Pre-Flight Preparation in Data Collection for Unmanned Aerial Vehicle-Based Bridge Inspection A Mission Planning Method for Long-Endurance Unmanned Aerial Vehicles: Integrating Heterogeneous Ground Control Resource Allocation Equivalent Spatial Plane-Based Relative Pose Estimation of UAVs Multi-Type Task Assignment Algorithm for Heterogeneous UAV Cluster Based on Improved NSGA-Ⅱ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1