ANALYSIS OF ACCIDENT DATA AT PT X FOR THE 2018-2022 PERIOD USING THE HFACS-MINING INDUSTRY FRAMEWORK METHOD

Agus Winarko, Zulkifli Djunaidi
{"title":"ANALYSIS OF ACCIDENT DATA AT PT X FOR THE 2018-2022 PERIOD USING THE HFACS-MINING INDUSTRY FRAMEWORK METHOD","authors":"Agus Winarko, Zulkifli Djunaidi","doi":"10.31955/mea.v8i2.3990","DOIUrl":null,"url":null,"abstract":"The mining industry is a high-risk industrial activity. Human factors have been identified as the most common cause of major accidents in the mining industry. The Incident Management System of PT X, which is a company in exploration, mining, processing, and marketing sector of copper, gold and silver concentrate, part of the state-owned mining holding enterprise Mining Industry Indonesia, documented 322 cases of accidents within the 2018-2022 period. This research aims to analyze accident data at PT X using the Human Factor Analysis and Classification System-Mining Industry (HFACS-MI) framework. Methods. This research collected qualitative data for 322 accident cases at PT X in 2018-2022 from the incident management system database categorized as recordable injuries. Factors causing the accident were coded using the HFACS-MI framework. Accident data analysis used descriptive statistics. Results. The study findings revealed that 84% of all accidents involved contractor workers and 16% involved permanent workers at PT X. The results of the analysis using the HFACS-MI framework showed that each layer or level contributes to accidents, namely external factors by 44%, organizational influence by 68%, unsafe leadership by 90%, preconditions for unsafe acts by 99%, and unsafe acts by 99.7%. Conclusion. These findings emphasize the need to reduce the number of human errors during mining operations to reduce the current accident trend. The HFACS-MI framework has proven to be a valuable tool for robust accident analysis of human factors in mining.","PeriodicalId":230876,"journal":{"name":"Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA)","volume":" 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31955/mea.v8i2.3990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mining industry is a high-risk industrial activity. Human factors have been identified as the most common cause of major accidents in the mining industry. The Incident Management System of PT X, which is a company in exploration, mining, processing, and marketing sector of copper, gold and silver concentrate, part of the state-owned mining holding enterprise Mining Industry Indonesia, documented 322 cases of accidents within the 2018-2022 period. This research aims to analyze accident data at PT X using the Human Factor Analysis and Classification System-Mining Industry (HFACS-MI) framework. Methods. This research collected qualitative data for 322 accident cases at PT X in 2018-2022 from the incident management system database categorized as recordable injuries. Factors causing the accident were coded using the HFACS-MI framework. Accident data analysis used descriptive statistics. Results. The study findings revealed that 84% of all accidents involved contractor workers and 16% involved permanent workers at PT X. The results of the analysis using the HFACS-MI framework showed that each layer or level contributes to accidents, namely external factors by 44%, organizational influence by 68%, unsafe leadership by 90%, preconditions for unsafe acts by 99%, and unsafe acts by 99.7%. Conclusion. These findings emphasize the need to reduce the number of human errors during mining operations to reduce the current accident trend. The HFACS-MI framework has proven to be a valuable tool for robust accident analysis of human factors in mining.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 HFACS- 矿业框架方法分析 2018-2022 年期间 X 号坪的事故数据
采矿业是一项高风险的工业活动。人为因素被认为是采矿业重大事故的最常见原因。PT X公司是一家从事铜、金、银精矿勘探、开采、加工和销售的公司,隶属于国有矿业控股企业印度尼西亚矿业公司,其事故管理系统记录了2018-2022年间的322起事故案例。本研究旨在使用人为因素分析和分类系统--采矿业(HFACS-MI)框架分析 PT X 的事故数据。方法。本研究从事故管理系统数据库中收集了 2018-2022 年 PT X 的 322 起事故案例的定性数据,并将其归类为可记录伤害。使用 HFACS-MI 框架对导致事故的因素进行编码。事故数据分析采用描述性统计。研究结果使用 HFACS-MI 框架进行分析的结果显示,每一层或每一级都是事故的诱因,即外部因素占 44%,组织影响占 68%,不安全领导占 90%,不安全行为的先决条件占 99%,不安全行为占 99.7%。结论。这些发现强调了减少采矿作业中人为失误的必要性,以降低当前的事故趋势。事实证明,HFACS-MI 框架是对采矿中的人为因素进行有力事故分析的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EFEK MODERASI DARI GCG : ANALISIS FAKTOR YANG MENENTUKAN KINERJA KEUANGAN PADA BANK UMUM SYARIAH IMPLEMENTASI BRAND MANAGEMENT PADA AKUN INSTAGRAM KANIK.OFFICIAL KONTRIBUSI STRATEGI PROMOSI TERHADAP KEPUTUSAN PEMBELIAN PRODUK KOSMETIK HALAL PENGELOLAAN PERBAIKAN BERKELANJUTAN INVENTARIS UNTUK REDUCE COST DI PT XYZ KOTA BANDUNG, INDONESIA HOW GEOPOLITICAL, CREDIT AND FINANCIAL RISKS DEFINE ASEAN BANKS’ PERFORMANCE?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1