Ludo L J Schoenmakers, Max J den Uijl, Jelle Postma, Tim A P van den Akker, Wilhelm T S Huck, Arnold J. M. Driessen
{"title":"SecYEG-mediated Translocation in a Model Synthetic Cell","authors":"Ludo L J Schoenmakers, Max J den Uijl, Jelle Postma, Tim A P van den Akker, Wilhelm T S Huck, Arnold J. M. Driessen","doi":"10.1093/synbio/ysae007","DOIUrl":null,"url":null,"abstract":"\n Giant unilamellar vesicles (GUVs) provide a powerful model compartment for synthetic cells. However, a key challenge is the incorporation of membrane proteins that allow for transport, energy transduction, compartment growth and division. Here, we have successfully incorporated the membrane protein complex SecYEG – the key bacterial translocase that is essential for the incorporation of newly synthesized membrane proteins – in GUVs. Our method consists of fusion of small unilamellar vesicles (SUVs) containing reconstituted SecYEG into GUVs, thereby forming SecGUVs. These are suitable for large scale experiments while maintaining a high protein:lipid ratio. We demonstrate that incorporation of SecYEG into GUVs does not inhibit its translocation efficiency. Robust membrane protein functionalized proteo-GUVs are promising and flexible compartments for use in the formation and growth of synthetic cells.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/synbio/ysae007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Giant unilamellar vesicles (GUVs) provide a powerful model compartment for synthetic cells. However, a key challenge is the incorporation of membrane proteins that allow for transport, energy transduction, compartment growth and division. Here, we have successfully incorporated the membrane protein complex SecYEG – the key bacterial translocase that is essential for the incorporation of newly synthesized membrane proteins – in GUVs. Our method consists of fusion of small unilamellar vesicles (SUVs) containing reconstituted SecYEG into GUVs, thereby forming SecGUVs. These are suitable for large scale experiments while maintaining a high protein:lipid ratio. We demonstrate that incorporation of SecYEG into GUVs does not inhibit its translocation efficiency. Robust membrane protein functionalized proteo-GUVs are promising and flexible compartments for use in the formation and growth of synthetic cells.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico