Quality Inspection and Problem Analysis of Satellite Image Data in Land Use Survey

Shuai Dong, Chenni Lu, Wenchao Gao, Chang Liu, Jin Bai
{"title":"Quality Inspection and Problem Analysis of Satellite Image Data in Land Use Survey","authors":"Shuai Dong, Chenni Lu, Wenchao Gao, Chang Liu, Jin Bai","doi":"10.5194/isprs-archives-xlviii-1-2024-129-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In order to improve the data quality of land use remote sensing monitoring images, this article introduces the process of generating satellite image data, elaborates on the content of satellite image data verification in land use remote sensing monitoring, and proposes quality issues and improvement measures for satellite image data. Taking the discovered satellite image data quality issues as an example, compared with quality inspection standards, it was found that the main problems in the results were projection parameter errors, image color distortion, image blurring, and position accuracy exceeding limits. It is recommended to check the above issues during the image production stage, analyze the reasons for exceeding the position accuracy limit, image distortion, and embossing, and provide relevant suggestions. Provided strong technical support for land use surveys.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-129-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. In order to improve the data quality of land use remote sensing monitoring images, this article introduces the process of generating satellite image data, elaborates on the content of satellite image data verification in land use remote sensing monitoring, and proposes quality issues and improvement measures for satellite image data. Taking the discovered satellite image data quality issues as an example, compared with quality inspection standards, it was found that the main problems in the results were projection parameter errors, image color distortion, image blurring, and position accuracy exceeding limits. It is recommended to check the above issues during the image production stage, analyze the reasons for exceeding the position accuracy limit, image distortion, and embossing, and provide relevant suggestions. Provided strong technical support for land use surveys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土地利用调查中卫星图像数据的质量检查和问题分析
摘要为提高土地利用遥感监测影像数据质量,本文介绍了卫星影像数据的生成过程,阐述了土地利用遥感监测中卫星影像数据核查的内容,提出了卫星影像数据质量问题及改进措施。以发现的卫星影像数据质量问题为例,对照质量检查标准,发现结果中存在的主要问题是投影参数误差、影像颜色失真、影像模糊、位置精度超限等。建议在影像制作阶段对上述问题进行检查,分析位置精度超限、影像失真、浮雕等问题的原因,并提出相关建议。为土地利用调查提供强有力的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1