{"title":"Mineralogical approach on laboratory weathering of uncontaminated Ryugu particles: Comparison with Orgueil and perspective for storage and analysis","authors":"Naoya Imae, Naotaka Tomioka, Masayuki Uesugi, Makoto Kimura, Akira Yamaguchi, Motoo Ito, Richard C. Greenwood, Tatsuya Kawai, Naoki Shirai, Takuji Ohigashi, Cedric Pilorget, Jean-Pierre Bibring, Ming-Chang Liu, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Masahiro Yasutake, Kaori Hirahara, Akihisa Takeuchi, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Toru Yada, Masanao Abe, Tomohiro Usui","doi":"10.1111/maps.14178","DOIUrl":null,"url":null,"abstract":"<p>Although CI chondrites are susceptible to terrestrial weathering on Earth, the specific processes are unknown. To elucidate the weathering mechanism, we conduct a laboratory experiment using pristine particles from asteroid Ryugu. Air-exposed particles predominantly develop small-sized euhedral Ca-S-rich grains (0.5–1 μm) on the particle surface and along open cracks. Both transmission electron microscopy and synchrotron-based computed tomography combined with XRD reveal that the grains are hydrous Ca-sulfate. Notably, this phase does not form in vacuum- or nitrogen-stored particles, suggesting this result is due to laboratory weathering. We also compare the Orgueil CI chondrite with the altered Ryugu particles. Due to the weathering of pyrrhotite and dolomite, Orgueil contains a significant amount of gypsum and ferrihydrite. We suggest that mineralogical changes due to terrestrial weathering of particles returned directly from asteroid occur even after a short-time air exposure. Consequently, conducting prompt analyses and ensuring proper storage conditions are crucial, especially to preserve the primordial features of organics and volatiles.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 7","pages":"1705-1722"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14178","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Although CI chondrites are susceptible to terrestrial weathering on Earth, the specific processes are unknown. To elucidate the weathering mechanism, we conduct a laboratory experiment using pristine particles from asteroid Ryugu. Air-exposed particles predominantly develop small-sized euhedral Ca-S-rich grains (0.5–1 μm) on the particle surface and along open cracks. Both transmission electron microscopy and synchrotron-based computed tomography combined with XRD reveal that the grains are hydrous Ca-sulfate. Notably, this phase does not form in vacuum- or nitrogen-stored particles, suggesting this result is due to laboratory weathering. We also compare the Orgueil CI chondrite with the altered Ryugu particles. Due to the weathering of pyrrhotite and dolomite, Orgueil contains a significant amount of gypsum and ferrihydrite. We suggest that mineralogical changes due to terrestrial weathering of particles returned directly from asteroid occur even after a short-time air exposure. Consequently, conducting prompt analyses and ensuring proper storage conditions are crucial, especially to preserve the primordial features of organics and volatiles.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.