{"title":"Numerical investigations of the interactions between bubble induced shock waves and particle based on OpenFOAM","authors":"Jia-xin Yu, Jin-sen Hu, Yu-hang Liu, Yi-fan Liu, Dan Gao, Yu-ning Zhang","doi":"10.1007/s42241-024-0017-7","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of particles and the shock waves generated by the cavitation bubbles can significantly affect the safety and the performance of hydrodynamic machineries. In the present paper, the shock waves generated by cavitation bubble collapsing near the particle are numerically investigated based on the OpenFOAM together with the numerical schlieren for the shock wave identifications. The numerical results reveal that the stand-off distance is one of the paramount factors affecting the interactions between the particle and the shock waves. Several different kinds of shock waves (e.g., bubble-inception, jet formation, particle reflected and jet-split shock waves) are observed during the bubble collapsing near the particle. For stand-off distance smaller than 0.5 or larger than 1.1, the maximum pressure at particle surface generated by the bubble growth can surpass those of the collapse stage.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 2","pages":"355 - 362"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0017-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of particles and the shock waves generated by the cavitation bubbles can significantly affect the safety and the performance of hydrodynamic machineries. In the present paper, the shock waves generated by cavitation bubble collapsing near the particle are numerically investigated based on the OpenFOAM together with the numerical schlieren for the shock wave identifications. The numerical results reveal that the stand-off distance is one of the paramount factors affecting the interactions between the particle and the shock waves. Several different kinds of shock waves (e.g., bubble-inception, jet formation, particle reflected and jet-split shock waves) are observed during the bubble collapsing near the particle. For stand-off distance smaller than 0.5 or larger than 1.1, the maximum pressure at particle surface generated by the bubble growth can surpass those of the collapse stage.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.