Bow wave breaking is a common phenomenon during ship navigation, especially at a high speed, involving complex physical mechanism such as interface mixing, air entrainment, and jet splashing. This study uses the delayed detached eddy simulation (DDES) turbulence model on the OpenFOAM platform to simulate flow around a KRISO Container Ship (KCS) model for a Froude number of 0.35, examining trim angles of 0°, 0.5°, 1°. This paper analyzes the statistical and power spectral density (PSD) characteristics of bow wave heights. The analysis shows root mean square (rms) and mean difference between top and bottom views indicate wave breaking. As the trim angle increases, peaks of rms in the bottom view become much higher than that in the top view, reaching 38% at 1°. PSD analysis reveals that resistance and wave height periods differ by no more than 5%, with small-scale structures like jetting and splashing causing non-dominant periodic and high-frequency wave height variations.