{"title":"Recent development in high temperature superconductor: Principle, materials, and applications","authors":"Heqi Wu","doi":"10.54254/2755-2721/63/20241015","DOIUrl":null,"url":null,"abstract":"Superconducting materials, discovered in the early twentieth century, have fascinated scientists with their unique attributes. This review provides a thorough exploration of superconductivity, tailored for newcomers, aiming to be a foundational resource for future research. It traces the evolution of different superconductors, including traditional, cuprate, and non-copper oxide types, detailing their specific characteristics. Central to the review is the examination of theoretical foundations, particularly the BCS theory, and the diverse applications of superconductors in high-performance magnets, energy transmission, and quantum computing. However, the practical deployment of superconductors is limited by challenges, notably their operation at extremely low temperatures, hindering widespread use. Furthermore, economic and technical difficulties in production and maintenance persist. To advance superconductors' potential, research must focus on enhancing critical temperatures and current density and developing cost-effective manufacturing techniques. This will enable novel applications in energy, transportation, and healthcare, driving technological progress.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/63/20241015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Superconducting materials, discovered in the early twentieth century, have fascinated scientists with their unique attributes. This review provides a thorough exploration of superconductivity, tailored for newcomers, aiming to be a foundational resource for future research. It traces the evolution of different superconductors, including traditional, cuprate, and non-copper oxide types, detailing their specific characteristics. Central to the review is the examination of theoretical foundations, particularly the BCS theory, and the diverse applications of superconductors in high-performance magnets, energy transmission, and quantum computing. However, the practical deployment of superconductors is limited by challenges, notably their operation at extremely low temperatures, hindering widespread use. Furthermore, economic and technical difficulties in production and maintenance persist. To advance superconductors' potential, research must focus on enhancing critical temperatures and current density and developing cost-effective manufacturing techniques. This will enable novel applications in energy, transportation, and healthcare, driving technological progress.