Formation and Oxidation of Imidazole in Tropospheric Aqueous-Phase Chemistry: A Computational Study

Bo Wei, Ruifeng Zhang, Patrick H.-L. Sit*, Maoxia He and Chak K. Chan*, 
{"title":"Formation and Oxidation of Imidazole in Tropospheric Aqueous-Phase Chemistry: A Computational Study","authors":"Bo Wei,&nbsp;Ruifeng Zhang,&nbsp;Patrick H.-L. Sit*,&nbsp;Maoxia He and Chak K. Chan*,&nbsp;","doi":"10.1021/acsestair.3c00097","DOIUrl":null,"url":null,"abstract":"<p >Imidazole produced by the interaction of glyoxal with nitrogen-containing chemicals in atmospheric particles can yield secondary organic aerosol (SOA) due to atmospheric oxidation. However, knowledge about the aqueous phase reaction mechanism of imidazole formation and its oxidation is still very limited. This work investigated the formation mechanism and aqueous-phase oxidative degradation reactions of imidazole with the hydroxyl radical (<sup>•</sup>OH), nitrate radical (NO<sub>3</sub><sup>•</sup>), and ozone (O<sub>3</sub>). Results showed that the formation of imidazole involves many dehydration reactions and is favorable under moderate- or low-RH conditions. The calculated atmospheric lifetimes of 14.05, 0.27, and 3.45 h for reactions with <sup>•</sup>OH, NO<sub>3</sub><sup>•</sup>, and O<sub>3</sub>, respectively, suggest the efficient oxidation of imidazole under tropospheric aqueous-phase conditions. Formamide and oxamide are the main products in the presence of O<sub>2</sub>, and nitro-imidazoles can also be formed in the presence of NO<sub>2</sub>. The optical properties of imidazole evolve significantly, attributable to the formation of nitro-imidazoles, resulting in a red shift of absorption peak to the UVA and UVB region.</p><p >Formamide and oxamide are the main aqueous oxidation products of imidazole, implying a potentially important source of SOA.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"1 7","pages":"617–627"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.3c00097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.3c00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Imidazole produced by the interaction of glyoxal with nitrogen-containing chemicals in atmospheric particles can yield secondary organic aerosol (SOA) due to atmospheric oxidation. However, knowledge about the aqueous phase reaction mechanism of imidazole formation and its oxidation is still very limited. This work investigated the formation mechanism and aqueous-phase oxidative degradation reactions of imidazole with the hydroxyl radical (OH), nitrate radical (NO3), and ozone (O3). Results showed that the formation of imidazole involves many dehydration reactions and is favorable under moderate- or low-RH conditions. The calculated atmospheric lifetimes of 14.05, 0.27, and 3.45 h for reactions with OH, NO3, and O3, respectively, suggest the efficient oxidation of imidazole under tropospheric aqueous-phase conditions. Formamide and oxamide are the main products in the presence of O2, and nitro-imidazoles can also be formed in the presence of NO2. The optical properties of imidazole evolve significantly, attributable to the formation of nitro-imidazoles, resulting in a red shift of absorption peak to the UVA and UVB region.

Formamide and oxamide are the main aqueous oxidation products of imidazole, implying a potentially important source of SOA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对流层水相化学中咪唑的形成和氧化:计算研究
乙二醛与大气颗粒中的含氮化学物质相互作用产生的咪唑会在大气氧化作用下生成二次有机气溶胶(SOA)。然而,有关咪唑形成及其氧化的水相反应机制的知识仍然非常有限。这项工作研究了咪唑与羟基自由基(-OH)、硝酸自由基(NO3-)和臭氧(O3)的形成机理和水相氧化降解反应。结果表明,咪唑的形成涉及许多脱水反应,在中度或低度相对湿度条件下有利。计算得出的与 -OH、NO3- 和 O3 反应的大气寿命分别为 14.05、0.27 和 3.45 小时,这表明在对流层水相条件下咪唑的氧化效率很高。甲酰胺和草酰胺是 O2 存在下的主要产物,硝基咪唑也可在 NO2 存在下生成。由于形成了硝基咪唑,咪唑的光学特性发生了显著变化,导致吸收峰向 UVA 和 UVB 区域红移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Atmospheric Radical Chemistry Evolution: A Chemical Scan of the Atmosphere Wildfire Seasons, Prenatal PM2.5 Exposure, and Respiratory Infections by Age 1 Year: A Population-Based Case-Control Analysis of Critical Developmental Windows Chemical Characterization of Organic Aerosol Tracers Derived from Burning Biomass Indigenous to Sub-Saharan Africa: Fresh Emissions versus Photochemical Aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1