Dynamic Risk Stratification of worsening heart failure using a Deep learning enabled Implanted Ambulatory Single lead ECG

James Howard, Neethu Vasudevan, Shantanu Sarkar, Sean Landman, J. Koehler, Daniel Keene
{"title":"Dynamic Risk Stratification of worsening heart failure using a Deep learning enabled Implanted Ambulatory Single lead ECG","authors":"James Howard, Neethu Vasudevan, Shantanu Sarkar, Sean Landman, J. Koehler, Daniel Keene","doi":"10.1093/ehjdh/ztae035","DOIUrl":null,"url":null,"abstract":"\n \n \n Implantable loop recorders (ILRs) provide continuous single-lead ambulatory electrocardiogram (aECG) monitoring. It is unknown whether these aECGs could be used to identify worsening heart failure.\n \n \n \n We linked ILR aECG from Medtronic device database to the LVEF measurements in Optum® de-identified electronic health record dataset. We trained an AI algorithm (aECG-CNN) on a dataset of 35,741 aECGs from 2247 patients to identify left ventricular ejection fraction (LVEF) ≤ 40% and assessed its performance using the area under the receiver operating characteristic curve (AUROC). aECG-CNN was then used to identify patients with increasing risk of heart-failure hospitalization in a real-world cohort of 909 patients with prior heart failure diagnosis. This dataset provided 12,467 follow up monthly evaluations, with 201 heart failure hospitalizations. For every month, time series features from these predictions were used to categorize patients into high and low risk groups and predict heart failure hospitalization in the next month. The risk of heart-failure hospitalization in the next 30 days was significantly higher in the cohort that aECG-CNN identified as high risk (hazard ratio 1·89; 95% confidence interval 1·28-2·79; p = 0·001) compared to low risk, even after adjusting patient demographics. (Hazard ratio 1·88, 1.27 to 2·79 p = 0·002).\n \n \n \n An AI algorithm trained to detect LVEF ≤40% using ILR aECGs can also readily identify patients at increased risk for HF hospitalizations by monitoring changes in the probability of heart failure over 30 days.\n","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Implantable loop recorders (ILRs) provide continuous single-lead ambulatory electrocardiogram (aECG) monitoring. It is unknown whether these aECGs could be used to identify worsening heart failure. We linked ILR aECG from Medtronic device database to the LVEF measurements in Optum® de-identified electronic health record dataset. We trained an AI algorithm (aECG-CNN) on a dataset of 35,741 aECGs from 2247 patients to identify left ventricular ejection fraction (LVEF) ≤ 40% and assessed its performance using the area under the receiver operating characteristic curve (AUROC). aECG-CNN was then used to identify patients with increasing risk of heart-failure hospitalization in a real-world cohort of 909 patients with prior heart failure diagnosis. This dataset provided 12,467 follow up monthly evaluations, with 201 heart failure hospitalizations. For every month, time series features from these predictions were used to categorize patients into high and low risk groups and predict heart failure hospitalization in the next month. The risk of heart-failure hospitalization in the next 30 days was significantly higher in the cohort that aECG-CNN identified as high risk (hazard ratio 1·89; 95% confidence interval 1·28-2·79; p = 0·001) compared to low risk, even after adjusting patient demographics. (Hazard ratio 1·88, 1.27 to 2·79 p = 0·002). An AI algorithm trained to detect LVEF ≤40% using ILR aECGs can also readily identify patients at increased risk for HF hospitalizations by monitoring changes in the probability of heart failure over 30 days.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用支持深度学习的植入式非卧床单导联心电图对心力衰竭恶化进行动态风险分层
植入式循环记录仪(ILR)可提供连续的单导联动态心电图(aECG)监测。目前尚不清楚这些心电图是否可用于识别恶化的心衰。 我们将美敦力设备数据库中的 ILR aECG 与 Optum® 去标识化电子健康记录数据集中的 LVEF 测量值联系起来。我们在来自 2247 名患者的 35,741 张 aECG 数据集上训练了一种人工智能算法(aECG-CNN),以识别左心室射血分数(LVEF)≤ 40% 的患者,并使用接收者操作特征曲线下面积(AUROC)评估其性能。该数据集提供了 12,467 次每月随访评估,其中有 201 次心衰住院治疗。在每个月,这些预测的时间序列特征被用来将患者分为高风险组和低风险组,并预测下个月的心衰住院情况。即使调整了患者的人口统计学特征,在 aECG-CNN 确定为高风险的人群中,未来 30 天心衰住院的风险也明显高于低风险人群(危险比 1-89;95% 置信区间 1-28-2-79;p = 0-001)。(危险比 1-88,1.27 至 2-79 p = 0-002)。 使用 ILR aECGs 检测 LVEF ≤40% 的人工智能算法也可以通过监测 30 天内心力衰竭概率的变化,轻松识别出心力衰竭住院风险增加的患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting early-stage coronary artery disease using machine learning and routine clinical biomarkers improved by augmented virtual data Why Thorough Open Data Descriptions Matters More Than Ever in the Age of AI: Opportunities for Cardiovascular Research Meet Key Digital Health thought leaders: Jagmeet (Jag) Singh Machine learning-based prediction of 1-year all-cause mortality in patients undergoing CRT implantation: Validation of the SEMMELWEIS-CRT score in the European CRT Survey I dataset Effect of Urban Environment on Cardiovascular Health: A Feasibility Pilot Study using Machine Learning to Predict Heart Rate Variability in Heart Failure Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1