Optical and electrical properties and applications of two-dimensional carbon-based nanomaterials

Zijun Zhang
{"title":"Optical and electrical properties and applications of two-dimensional carbon-based nanomaterials","authors":"Zijun Zhang","doi":"10.54254/2755-2721/61/20240912","DOIUrl":null,"url":null,"abstract":"As an emerging material, two-dimensional (2D) carbon-based nanomaterials have unique optical and electrical properties due to their unique atomic layer structure. On the one hand, due to their high transmittance, high carrier mobility, controllable Fermi level, and wide spectral light saturation absorption characteristics, they can be applied in new-generation solar cells, organic light-emitting diodes, touch screens, and fiber optic devices. On the other hand, due to their unique nanostructure, they have high specific surface area, low diffusion distance, high conductivity, and ion conductivity. They can serve as substrates and work together with other materials as electrode materials for future fuel cells and lithium-ion batteries and have significant advantages in fields such as sensors. This article mainly summarizes the impact of two-dimensional carbon-based nanomaterials represented by graphene, Mxene, and 2D covalent organic frameworks (COFs) on their optical and electrical properties, and summarizes the latest practical applications and research progress of these nanomaterials in the field of optics and electronics. In addition, a corresponding summary and outlook have been made on the problems that need to be solved in future applications of 2D carbon-based nanomaterials.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/61/20240912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an emerging material, two-dimensional (2D) carbon-based nanomaterials have unique optical and electrical properties due to their unique atomic layer structure. On the one hand, due to their high transmittance, high carrier mobility, controllable Fermi level, and wide spectral light saturation absorption characteristics, they can be applied in new-generation solar cells, organic light-emitting diodes, touch screens, and fiber optic devices. On the other hand, due to their unique nanostructure, they have high specific surface area, low diffusion distance, high conductivity, and ion conductivity. They can serve as substrates and work together with other materials as electrode materials for future fuel cells and lithium-ion batteries and have significant advantages in fields such as sensors. This article mainly summarizes the impact of two-dimensional carbon-based nanomaterials represented by graphene, Mxene, and 2D covalent organic frameworks (COFs) on their optical and electrical properties, and summarizes the latest practical applications and research progress of these nanomaterials in the field of optics and electronics. In addition, a corresponding summary and outlook have been made on the problems that need to be solved in future applications of 2D carbon-based nanomaterials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维碳基纳米材料的光学和电学特性及应用
作为一种新兴材料,二维(2D)碳基纳米材料因其独特的原子层结构而具有独特的光学和电学特性。一方面,由于其具有高透过率、高载流子迁移率、可控费米级和宽光谱光饱和吸收等特性,可应用于新一代太阳能电池、有机发光二极管、触摸屏和光纤器件等领域。另一方面,由于其独特的纳米结构,它们具有高比表面积、低扩散距离、高导电性和离子导电性。它们可以作为未来燃料电池和锂离子电池的基底材料,并与其他材料一起作为电极材料,在传感器等领域具有显著优势。本文主要总结了以石墨烯、Mxene 和二维共价有机框架(COFs)为代表的二维碳基纳米材料对其光学和电学性能的影响,并总结了这些纳米材料在光学和电子学领域的最新实际应用和研究进展。此外,还对二维碳基纳米材料未来应用中需要解决的问题进行了相应的总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of seamless assistance with Google Assistant leveraging cloud computing Deep learning vulnerability analysis against adversarial attacks Comparison of deep learning models based on Chest X-ray image classification DOA estimation technology based on array signal processing nested array Precise positioning and prediction system for autonomous driving based on generative artificial intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1