Lília M. S. Dias, Lianshe Fu, R. F. P. Pereira, Albano N. Carneiro Neto, V. de Zea Bermudez, P. S. André, Rute A. S. Ferreira
{"title":"Evolving photonic authentication with sustainable luminescent smart e-tags","authors":"Lília M. S. Dias, Lianshe Fu, R. F. P. Pereira, Albano N. Carneiro Neto, V. de Zea Bermudez, P. S. André, Rute A. S. Ferreira","doi":"10.1002/flm2.16","DOIUrl":null,"url":null,"abstract":"<p>Counterfeiting remains a significant threat, causing economic and safety concerns. Addressing this, authentication technologies have gained traction. With the rise of the Internet of Things, authentication is crucial. Photonic Physical Unclonable Functions (PUFs) offer unique identifiers. We present low-cost and sustainable e-tags that may be printed virtually on any surface for authentication due to the bespoke texturization of sustainable inks of surface-modified carbon dots. A single e-tag provides randomized phosphorescence (or afterglow) patterns, which provide multiple layers of safety by exploiting different patterning, excitation energies, and temporal characteristics. A comprehensive case study employing photonic challenge-response pairs, involving a sample size of up to 2<sup>9</sup> emission spectra in combination with 10<sup>2</sup> photographs taken with a smartphone, displays a low authentication probability of error (<10<sup>−11</sup>), which supports the potential of our combined approach toward the development of more robust photonic PUF systems.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 2","pages":"116-126"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.16","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlexMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/flm2.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Counterfeiting remains a significant threat, causing economic and safety concerns. Addressing this, authentication technologies have gained traction. With the rise of the Internet of Things, authentication is crucial. Photonic Physical Unclonable Functions (PUFs) offer unique identifiers. We present low-cost and sustainable e-tags that may be printed virtually on any surface for authentication due to the bespoke texturization of sustainable inks of surface-modified carbon dots. A single e-tag provides randomized phosphorescence (or afterglow) patterns, which provide multiple layers of safety by exploiting different patterning, excitation energies, and temporal characteristics. A comprehensive case study employing photonic challenge-response pairs, involving a sample size of up to 29 emission spectra in combination with 102 photographs taken with a smartphone, displays a low authentication probability of error (<10−11), which supports the potential of our combined approach toward the development of more robust photonic PUF systems.